

The DevOps 2.0 Toolkit
Automating the Continuous Deployment Pipeline with
Containerized Microservices

Viktor Farcic

© 2016 Viktor Farcic

Tweet This Book!
Please help Viktor Farcic by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought The DevOps 2.0 Toolkit by @vfarcic

The suggested hashtag for this book is #devops2book.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#devops2book

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20The%20DevOps%202.0%20Toolkit%20by%20@vfarcic
https://twitter.com/search?q=%23devops2book
https://twitter.com/search?q=%23devops2book

Contents

Preface . 1

Overview . 3

Audience . 4

About the Author . 5

The DevOps Ideal . 6
Continuous Integration, Delivery, and Deployment . 6
The Light at the End of the Deployment Pipeline . 9

The Implementation Breakthrough: Continuous Deployment, Microservices, and Con-
tainers . 11
Continuous Integration . 11
Continuous Delivery and Deployment . 18
Microservices . 23
Containers . 23
The Three Musketeers: Synergy of Continuous Deployment, Microservices, and Containers 25

System Architecture . 27
Monolithic Applications . 27
Services Split Horizontally . 30
Microservices . 31
Monolithic Applications and Microservices Compared 33
Deployment Strategies . 35
Microservices Best Practices . 44
Final Thoughts . 49

Setting Up the Development Environment With Vagrant and Docker 51
Combining Microservice Architecture and Container Technology 51
Vagrant and Docker . 53
Development Environment Setup . 55

Implementation of the Deployment Pipeline: Initial Stages 63
Spinning Up the Continuous Deployment Virtual Machine 63

CONTENTS

Deployment Pipeline Steps . 64
The Checklist . 77

Configuration Management in the Docker World . 79
CFEngine . 79
Puppet . 79
Chef . 80
Ansible . 80
Final Thoughts . 81
Configuring the Production Environment . 82
Setting Up the Ansible Playbook . 85

Implementation of the Deployment Pipeline: Intermediate Stages 89
Deploying Containers to the Production Server . 90
Docker UI . 95
The Checklist . 96

Service Discovery: The Key to Distributed Services . 98
Service Registry . 100
Service Registration . 100
Service Discovery . 102
Service Discovery Tools . 103
Manual Configuration . 104
Zookeeper . 104
etcd . 105
Consul . 121
Service Discovery Tools Compared . 142

Proxy Services . 144
Reverse Proxy Service . 144
How Can Proxy Service Help Our Project? . 146
nginx . 147
HAProxy . 159
Proxy Tools Compared . 165

Implementation of the Deployment Pipeline: The Late Stages 168
Starting the Containers . 170
Integrating the Service . 172
Running Post-Deployment Tests . 173
Pushing the Tests Container to the Registry . 174
The Checklist . 175

Automating Implementation of the Deployment Pipeline 177
Deployment Pipeline Steps . 177

CONTENTS

The Playbook and the Role . 181
Pre-Deployment Tasks . 182
Deployment Tasks . 185
Post-Deployment Tasks . 188
Running the Automated Deployment Pipeline . 189

Continuous Integration (CI), Delivery and Deployment (CD) Tools 191
CI/CD Tools Compared . 191
The Short History of CI/CD Tools . 193
Jenkins . 195
Final Thoughts . 220

Blue-Green Deployment . 222
The Blue-Green Deployment Process . 223
Manually Running the Blue-Green Deployment . 226
Automating the Blue-Green Deployment with Jenkins Workflow 243

Clustering And Scaling Services . 253
Scalability . 253
Axis Scaling . 255
Clustering . 258
Docker Clustering Tools Compared: Kubernetes vs Docker Swarm vs Mesos 259
Docker Swarm Walkthrough . 264
Deploying with Docker Swarm Without Links . 278
Scaling Services with Docker Swarm . 285
Scheduling Containers Depending on Reserved CPUs and Memory 287
Automating Deployment With Docker Swarm and Ansible 292

Self-Healing Systems . 300
Self-Healing Levels and Types . 301
Self-Healing Architecture . 306
Self-Healing with Docker, Consul Watches, and Jenkins 313
Combining On-Premise with Cloud Nodes . 346
Self-Healing Summary (So Far) . 346

Centralized Logging and Monitoring . 348
The Need for Centralized Logging . 349
Sending Log Entries to ElasticSearch . 351
Parsing Log Entries . 359
Sending Log Entries to a Central LogStash Instance . 362
Sending Docker Log Entries to a Central LogStash Instance 368
Self-Healing Based on Software Data . 381
Logging Hardware Status . 387
Self-Healing Based on Hardware Data . 393

CONTENTS

Final Thoughts . 394

Farewell . 396

Preface
I started my career as a developer. During those early days, all I knew (and thought I should
know) was to write code. I thought that a great software designer is a person that is proficient
in writing code and that the path to the mastery of the craft was to know everything about a single
programming language of choice. Later on, that changed and I started taking an interest in different
programming languages. I switched from Pascal to Basic and then ASP. When Java and, later on,
.Net came into existence, I learned benefits of object oriented programming. Python, Perl, Bash,
HTML, JavaScript, Scala… Each programming language brought something new and thought me
how to think differently and how to pick the right tool for the task at hand. With each new language
I learned, I felt like I was closer to being an expert. All I wanted was to become a senior programmer.
That desire changed with time. I learned that if I was to do my job well, I had to become a software
craftsman. I had to learn much more than to type code. Testing became my obsession for some time,
and now I consider it an integral part of development. Except in very special cases, each line of code I
write is done with test-driven development (TDD). It became an indispensable part of my tool-belt. I
also learned that I had to be close to the customer andworkwith him side by sidewhile definingwhat
should be done. All that and many other things lead me to software architecture. Understanding the
“big picture” and trying to fit different pieces into one big system was the challenge that I learned
to like.

Throughout all the years I’ve been working in the software industry, there was no single tool,
framework or practice that I admiredmore than continuous integration (CI) and, later on, continuous
delivery (CD). The real meaning of that statement hides behind the scope of what CI/CD envelops.
In the beginning, I thought that CI/CD means that I knew Jenkins and was able to write scripts.
As the time passed and I got more and more involved and learned that CI/CD relates to almost
every aspect of software development. That knowledge came at a cost. I failed (more than once)
to create a successful CI pipeline with applications I worked with at the time. Even though others
considered the result a success, now I know that it was a failure because the approach I took was
wrong. CI/CD cannot be done without making architectural decisions. Similar can be said for tests,
configurations, environments, fail-over, and so on. To create a successful implementation of CI/CD,
we need to make a lot of changes that, on the first look, do not seem to be directly related. We need
to apply some patterns and practices from the very beginning. We have to think about architecture,
testing, coupling, packaging, fault tolerance, and many other things. CI/CD requires us to influence
almost every aspect of software development. That diversity is what made me fall in love with it. By
practicing CI/CDwe are influencing and improving almost every aspect of the software development
life cycle.

To be truly proficient with CI/CD, we need to be much more than experts in operations. DevOps
movementwas a significant improvement that combined traditional operationswith advantages that
development could bring. I think that is not enough. We need to know and influence architecture,

1

Preface 2

testing, development, operations and even customer negotiations if we want to gain all the benefits
that CI/CD can bring. Even the name DevOps as the driving force behind the CI/CD is not
suitable since it’s not only about development and operations but everything related to software
development. It should also include architects, testers, and even managers. DevOps was a vast
improvement when compared to the traditional operations by combining them with development.
The movement understood that manually running operations is not an option given current business
demands and that there is no automationwithout development. I think that the time came to redefine
DevOps by extending its scope. Since the name DevOpsArchTestManageAndEverythingElse is too
cumbersome to remember and close to impossible to pronounce, I opt for DevOps 2.0. It’s the next
generation that should drop the heavy do-it-all products for smaller tools designed to do very specific
tasks. It’s the switch that should go back to the beginning and not only make sure that operations are
automated but that the whole system is designed in the way that it can be automated, fast, scalable,
fault-tolerant, with zero-downtime, easy to monitor, and so on.We cannot accomplish this by simply
automating manual procedures and employing a single do-it-all tool. We need to go much deeper
than that and start refactoring the whole system both on the technological as well as the procedural
level.

Overview
This book is about different techniques that help us architect software in a better and more efficient
waywithmicroservices packed as immutable containers, tested and deployed continuously to servers
that are automatically provisioned with configuration management tools. It’s about fast, reliable
and continuous deployments with zero-downtime and ability to roll-back. It’s about scaling to any
number of servers, design of self-healing systems capable of recuperation from both hardware and
software failures and about centralized logging and monitoring of the cluster.

In other words, this book envelops the whole microservices development and deployment lifecycle
using some of the latest and greatest practices and tools. We’ll use Docker, Kubernetes, Ansible,
Ubuntu, Docker Swarm and Docker Compose, Consul, etcd, Registrator, confd, Jenkins, and so on.
We’ll go through many practices and, even more, tools.

Finally, while there will be a lot of theory, this is a hands-on book. You won’t be able to complete it
by reading it in a metro on a way to work. You’ll have to read this book while in front of a computer,
and get your hands dirty. Eventually, you might get stuck and in need of help. Or you might want
to write a review or comment on the book’s content. Please post your thoughts on the The DevOps
2.0 Toolkit channel in Disqus¹. If you prefer one-on-one discussion, feel free to send me an email to
viktor@farcic.com, or to contact me on HangOuts, and I’ll give my best to help you out.

¹https://disqus.com/home/channel/thedevops20toolkit/

3

https://disqus.com/home/channel/thedevops20toolkit/
https://disqus.com/home/channel/thedevops20toolkit/
https://disqus.com/home/channel/thedevops20toolkit/

Audience
This book is for professionals interested in the full microservices lifecycle combined with continuous
deployment and containers. Due to the very broad scope, target audience could be architects who
want to know how to design their systems around microservices. It could be DevOps wanting
to know how to apply modern configuration management practices and continuously deploy
applications packed in containers. It is for developers who would like to take the process back into
their hands as well as for managers who would like to gain a better understanding of the process
used to deliver software from the beginning to the end. We’ll speak about scaling and monitoring
systems. We’ll even work on the design (and implementation) of self-healing systems capable of
recuperation from failures (be it of hardware or software nature). We’ll deploy our applications
continuously directly to production without any downtime and with the ability to rollback at any
time.

This book is for everyone wanting to know more about the software development lifecycle starting
from requirements and design, through development and testing all the way until deployment and
post-deployment phases. We’ll create the processes taking into the account best practices developed
by and for some of the biggest companies.

4

About the Author
Viktor Farcic is a Senior Consultant at CloudBees².

He coded using a plethora of languages starting with Pascal (yes, he is old), Basic (before it got Visual
prefix), ASP (before it got .Net suffix), C, C++, Perl, Python, ASP.Net, Visual Basic, C#, JavaScript,
etc. He never worked with Fortran. His current favorites are Scala and JavaScript even though most
of his office hours he spends with Java.

His big passions are Microservices, Continuous Deployment and Test-Driven Development (TDD).

He often speaks at community gatherings and conferences.

He wrote Test-Driven Java Development³ book published by Packt Publishing.

²https://www.cloudbees.com/
³http://www.amazon.com/Test-Driven-Java-Development-Viktor-Farcic-ebook/dp/B00YSIM3SC

5

https://www.cloudbees.com/
http://www.amazon.com/Test-Driven-Java-Development-Viktor-Farcic-ebook/dp/B00YSIM3SC
https://www.cloudbees.com/
http://www.amazon.com/Test-Driven-Java-Development-Viktor-Farcic-ebook/dp/B00YSIM3SC

The DevOps Ideal
Working on small greenfield projects is great. The last one I was involved with was during the
summer of 2015 and, even though it had its share of problems, it was a real pleasure. Working
with a small and relatively new set of products allowed us to choose technologies, practices, and
frameworks we liked. Shall we use microservices? Yes, why not. Shall we try Polymer and GoLang?
Sure! Not having baggage that holds you down is wonderful feeling. A wrong decision would put
us back for a week, but it would not put in danger years of work someone else did before us. Simply
put, there was no legacy system to think about and be afraid of.

Most of my career was not like that. I had the opportunity, or a curse, to work on big inherited
systems. I worked for companies that existed long before I joined them and, for better or worse,
already had their systems in place. I had to balance the need for innovation and improvement with
obvious requirement that existing business must continue operating uninterrupted. During all those
years I was continuously trying to discover new ways to improve those systems. It pains me to
admit, but many of those attempts were failures.

We’ll explore those failures in order to understand better the motivations that lead to advancements
we’ll discuss throughout this books.

Continuous Integration, Delivery, and Deployment

Discovering CI and, later on, CD, was one of the crucial points in my career. It all made perfect
sense. Integration phase back in those days could last anything from days to weeks or even months.
It was the period we all dreaded. After months of work performed by different teams working on
different services or applications, the first day of the integration phase was the definition of hell on
earth. If I wouldn’t know better, I’d say that Dante was a developer and wrote Infierno during the
integration phase.

On the dreaded first day of the integration phase, we would all come to the office with grim faces.
Only whispers could be heard while integration engineer would announce that the whole system
is set up, and the “game” could begin. He would turn it on and, sometimes, the result would be a
blank screen. Months of work in isolation would prove, one more time, to be a disaster. Services and
applications could not be integrated, and the long process of fixing problems would begin. In some
cases, we would need to redo weeks of work. Requirements defined in advance were, as always,
subject to different interpretations and those differences are nowhere more noticeable than in the
integration phase.

Then eXtreme Programming (XP) practices came into existence and, with them, continuous inte-
gration (CI). The idea that integration should be done continuously today sounds like something

6

The DevOps Ideal 7

obvious. Duh! Of course, you should not wait until the last moment to integrate! Back then, in the
waterfall era, such a thing was not so obvious as today. We implemented a continuous integration
pipeline and started checking out every commit, running static analysis, unit and functional tests,
packaging, deploying and running integration tests. If any of those phases failed, we would abandon
what we were doing and made fixing the problem detected by the pipeline our priority. The pipeline
itself was fast. Minutes after someone would make a commit to the repository we would get a
notification if something failed. Later on, continuous delivery (CD) started to take ground, and we
would have confidence that every commit that passed the whole pipeline could be deployed to
production. We could do even better and not only attest that each build is production ready, but
apply continuous deployment and deploy every build without waiting for (manual) confirmation
from anyone. And the best part of all that was that everything was fully automated.

If was a dream come true. Literally! It was a dream. It wasn’t something we managed to turn into
reality. Why was that? We made mistakes. We thought that CI/CD is a task for the operations
department (today we’d call them DevOPS). We thought that we could create a process that wraps
around applications and services. We thought that CI tools and frameworks are ready. We thought
that architecture, testing, business negotiations and other tasks and teams are the job for someone
else. We were wrong. I was wrong.

Today I know that successful CI/CD means that no stone can be left unturned. We need to
influence everything; from architecture through testing, development and operations all the way
until management and business expectations. But let us go back again. What went wrong in those
failures of mine?

Architecture

Trying to fit a monolithic application developed bymany people throughout the years, without tests,
with tight coupling and outdated technology is like an attempt to make an eighty-year-old lady look
young again. We can improve her looks, but the best we can do is make her look a bit less old, not
young. Some systems are, simply put, too old to be worth the “modernization” effort. I tried it, many
times, and the result was never as expected. Sometimes, the effort in making it “young again” is not
cost effective. On the other hand, I could not go to the client of, let’s say, a bank, and say “we’re
going to rewrite your whole system.” Risks are too big to rewrite everything and, be it as it might,
due to its tight coupling, age, and outdated technology, changing parts of it is not worth the effort.
Commonly taken option was to start building the new system and, in parallel, maintain the old one
until everything is done. That was always a disaster. It can take years to finish such a project, and
we all know what happens with things planned for such a long term. That’s not even the waterfall
approach. That’s like standing at the bottom of Niagara Falls and wondering why you get wet. Even
doing trivial things like updating the JDK was quite a feat. And those were the cases when I would
consider myself lucky. What would you do with, for example, codebase done in Fortran or Cobol?

Then I heard aboutmicroservices. It was likemusic tomy ears. The idea that we can buildmany small
independent services that can be maintained by small teams, have codebase that can be understood
in no time, being able to change framework, programming language or a database without affecting

The DevOps Ideal 8

the rest of the system and being able to deploy it independently from the rest of the system was too
good to be true.We could, finally, start taking parts of the monolithic application out without putting
the whole system at (significant) risk. It sounded as too good to be true. And it was. Benefits came
with downsides. Deploying and maintaining a vast number of services turned out to be a heavy
burden. We had to compromise and start standardizing services (killing innovation), we created
shared libraries (coupling again), we were deploying them in groups (slowing everything), and so
on. In other words, we had to remove the benefits microservices were supposed to bring. And let’s
not even speak of configurations and the mess they created inside servers. Those were the times I try
to forget. We had enough problems like that with monoliths. Microservices only multiplied them. It
was a failure. However, I was not yet ready to give up. Call me a masochist.

I had to face problems one at a time, and one of the crucial ones were deployments.

Deployments

You know the process. Assemble some artifacts (JAR, WAR, DLL, or whatever is the result of your
programming language), deploy it to the server that is already polluted with… I cannot even finish
the sentence because, in many cases, we did not even know what was on servers. With enough time,
any server maintained manually becomes full of “things”. Libraries, executables, configurations,
gremlins and trolls. It would start to develop its personality. Old and grumpy, fast but unreliable,
demanding, and so on. The only thing all the servers had in commonwas that they were all different,
and no one could be sure that software tested in, let’s say, pre-production environment will behave
the same when deployed to production. It was a lottery. You might get lucky, but most likely you
won’t. Hope dies last.

You might, rightfully, wonder why didn’t we use virtual machines in those days. Well, there are two
answers to that question, and they depend on the definition of “those days”. One answer is that in
“those days” we didn’t have virtual machines, or they were so new that management was too scared
to approve their usage. The other answer is that later on we did use VMs, and that was the real
improvement. We could copy production environment and use it as, let’s say testing environment.
Except that there was still a lot of work to update configurations, networking, and so on. Besides,
we still did not know what was accumulated on those machines throughout the years. We just knew
how to duplicate them. That still did not solve the problem that configurations were different from
one VM to another as well as that a copy is the same as the original only for a short period. Do
the deployment, change some configuration, bada bing, bada boom, you go back to the problem of
testing something that is not the same as it will be in production. Differences accumulate with time
unless you have a repeatable and reliable automated process instead of manual human interventions.
If such a thing would exist, we could create immutable servers. Instead of deploying applications to
existing servers and go down the path of accumulating differences, we could create a new VM as part
of the CI/CD pipeline. So, instead of creating JARs, WAR, DLLs, and so on, we were creating VMs.
Every time there is a new release it would come as a complete server built from scratch. That way
we would know that what was tested is what goes into production. Create new VM with software
deployed, test it and switch your production router to point from the old to the new one. It was
awesome, except that it was slow and resource demanding. Having a separate VM for each service

The DevOps Ideal 9

is overkill. Still, armed with patience, immutable servers were a good idea, but the way we used that
approach and the tools required to support it were not good enough.

Orchestration

The orchestration was the key. Puppet and Chef proved to be a big help. Programming everything
related to servers setup and deployment was a huge improvement. Not only that the time needed
to setup servers and deploy software dropped drastically, but we could, finally, accomplish a more
reliable process. Having humans (read operations department) manually running those types of
tasks was a recipe for disaster. Finally a story with a happy ending? Not really. You probably started
noticing a pattern. As soon as one improvement was accomplished, it turned out that it comes
with, often, high price. Given enough time, Puppet and Chef scripts and configurations turn into
an enormous pile of **** (I was told not to use certain words so please fill in the blanks with your
imagination). Maintaining them tends to become a nightmare in itself. Still, with orchestration tools,
we could drastically reduce the time it took to create immutable VMs. Something is better than
nothing.

The Light at the End of the Deployment Pipeline

I could go on and on describing problems we faced. Don’t take me wrong. All those initiatives were
improvements and have their place in software history. But history is the past, and we live in the
present trying to look into the future. Many, if not all of the problems we had before are now solved.
Ansible proved that orchestration does not need to be complicated to set up nor hard to maintain.
With the appearance of Docker, containers are slowly replacing VMs as the preferable way to create
immutable deployments. New operating systems are emerging and fully embracing containers as
first class citizens. Tools for service discovery are showing us new horizons. Swarm, Kubernetes and
Mesos/DCOS are opening doors into areas that were hard to imagine only a few years ago.

Microservices are slowly becoming the preferred way to build big, easy to maintain and highly
scalable systems thanks to tools like Docker, CoreOS, etcd, Consul, Fleet, Mesos, Rocket, and others.
The idea was always great, but we did not have the tools to make it work properly. Now we do!
That does not mean that all our problems are gone. It means that when we solve one problem, the
bar moves higher up, and new issues emerge.

I started by complaining about the past. That will not happen again. This book is for readers who
do not want to live in the past but present. This book is about preparations for the future. This book
is about stepping through the looking glass, about venturing into new areas and about looking at
things from a new angle.

This is your last chance. After this, there is no turning back. You take the blue pill - the story ends,
you wake up in your bed and believe whatever you want to believe. You take the red pill - you stay

in Wonderland and I show you how deep the rabbit-hole goes.

– Morpheus (Matrix)

The DevOps Ideal 10

If you took the blue pill, I hope that you didn’t buy this book and got this far by reading the free
sample. There are no hard feelings. We all have different aspirations and goals. If, on the other hand,
you chose the red one, you are in for a ride. It will be like a roller coaster, and we are yet to discover
what awaits us at the end of the ride.

The Implementation Breakthrough:
Continuous Deployment,
Microservices, and Containers
On the first look continuous deployment (CD), microservices (MS) and containers might seem
like three unrelated subjects. After all, DevOps movement does not stipulate that microservices
are necessary for continuous deployment, nor microservices need to be packaged into containers.
However, when those three are combined, new doors open waiting for us to step through. Recent
developments in the area of containers and the concept of immutable deployments enable us to
overcome many of the problems microservices had before. They, on the other hand, allow us to gain
flexibility and speed without which CD is not possible or cost effective.

Before we move forward with this line of thinking, we’ll try to define correctly each of those terms.

Continuous Integration

To understand continuous deployment we should first define its predecessors; continuous integration
and continuous delivery.

Integration phase of a project development tended to be one of the most painful stages in software
development life-cycle. We would spend weeks, months or even years working in separate teams
dedicated to separate applications and services. Each of those teams would have their set of
requirements and tried their best to meet them. While it wasn’t hard to periodically verify each
of those applications and services in isolation, we all dreaded the moment when team leads would
decide that the time has come to integrate them into a unique delivery. Armed with the experience
from previous projects, we knew that integration will be problematic. We knew that we will discover
problems, unmet dependencies, interfaces that do not communicate with each others correctly and
that managers will get disappointed, frustrated, and nervous. It was not uncommon to spend weeks
or even months in this phase. The worse part of all that was that a bug found during the integration
phase could mean going back and redoing days or weeks worth of work. If someone asked me how
a feel about integration I’d say that it was closest I could get to becoming permanently depressed.
Those were different times. We thought that was the “right” way to develop applications.

A lot changed since then. Extreme Programming (XP) and other agile methodologies become
familiar, automated testing become frequent, and continuous integration started to take ground.
Today we know that the way we developed software back then was wrong. The industry moved a
long way since then.

11

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 12

Continuous integration (CI) usually refers to integrating, building, and testing code within the
development environment. It requires developers to integrate code into a shared repository often.
How often is often can be interpreted in many ways and it depends on the size of the team, the size of
the project and the number of hours we dedicate to coding. In most cases it means that coders either
push directly to the shared repository or merge their code with it. No matter whether we’re pushing
or merging, those actions should, in most cases, be done at least a couple of times a day. Getting
code to the shared repository is not enough and we need to have a pipeline that, as a minimum,
checks out the code and runs all the tests related, directly or indirectly, to the code corresponding
to the repository. The result of the execution of the pipeline can be either red or green. Something
failed, or everything was run without any problems. In the former case, minimum action would be
to notify the person who committed the code.

The continuous integration pipeline should run on every commit or push. Unlike continuous
delivery, continuous integration does not have a clearly defined goal of that pipeline. Saying that
one application integrates with others does not tell us a lot about its production readiness. We do
not know how much more work is required to get to the stage when the code can be delivered to
production. All we are truly striving for is the knowledge that a commit did not break any of the
existing tests. Never the less, CI is a huge improvement when done right. In many cases, it is a
very hard practice to implement, but once everyone is comfortable with it, the results are often very
impressive.

Integration tests need to be committed together with the implementation code, if not before. To gain
maximum benefits, we should write tests in test-driven development (TDD) fashion. That way, not
only that tests are ready for commit together with implementation, but we know that they are not
faulty and would not pass no matter what we do. There are many other benefits TDD brings to the
table and, if you haven’t already, I strongly recommend to adopt it. You might want to consult the
Test-Driven Development⁴ section of the Technology Conversations⁵ blog.

Tests are not the only CI prerequisite. One of the most important rules is that when the pipeline
fails, fixing the problem has higher priority than any other task. If this action is postponed, next
executions of the pipeline will fail as well. People will start ignoring the failure notifications and,
slowly, CI process will begin losing its purpose. The sooner we fix the problem discovered during the
execution of the CI pipeline, the better we are. If corrective action is taken immediately, knowledge
about the potential cause of the problem is still fresh (after all, it’s been only a few minutes between
the commit and the failure notification) and fixing it should be trivial.

So how does it work? Details depend on tools, programming language, project, and many other
factors. The most common flow is the following.

• Pushing to the code repository
• Static analysis
• Pre-deployment testing

⁴http://technologyconversations.com/category/test-driven-development/
⁵http://technologyconversations.com/

http://technologyconversations.com/category/test-driven-development/
http://technologyconversations.com/
http://technologyconversations.com/category/test-driven-development/
http://technologyconversations.com/

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 13

• Packaging and deployment to the test environment
• Post-deployment testing

Pushing to the Code Repository

Developers work on features in separate branches. Once they feel comfortable that their work is
stable, the branch they’ve been working on is merged with the mainline (or trunk). More advanced
teams may skip feature branches altogether and commit directly to the mainline. The crucial point is
that the mainline branch (or trunk) needs to receive commits often (either through merges or direct
pushes). If days or weeks pass, changes accumulate and benefits of using continuous integration
diminish. In that case, there is no fast feedback since the integration with other people’s code
is postponed. On the other hand, CI tools (we’ll talk about them later) are monitoring the code
repository, and whenever a commit is detected, the code is checked out (or cloned) and the CI
pipeline is run. The pipeline itself consists of a set of automated tasks run in parallel or sequentially.
The result of the pipeline is either a failure in one of its steps or a promotion. As a minimum, failure
should result in some form of a notification sent to the developer that pushed the commit that
resulted in a failed pipeline. It should be his responsibility to fix the problem (after all, he knows
best how to fix a problem created by him only minutes ago) and do another commit to the repository
that, in turn, will trigger another execution of the pipeline. This developer should consider fixing the
problem his highest priority task so that the pipeline continues being “green” and avoid failures that
would be produced by commits from other developers. Try to keep a number of people who receive
the failure notification to a minimum. The whole process from detecting a problem until it is fixed
should be as fast as possible. The more people are involved, the more administrative work tends to
happen and the more time is spent until the fix is committed. If, on the other hand, the pipeline run
successfully throughout all its tasks, package produced throughout the process is promoted to the
next stage and, in most cases, given to testers for manual verifications. Due to the difference in speed
between the pipeline (minutes) and manual testing (hours or days), not every pipeline execution is
taken by QAs.

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 14

Figure 2-1: Continuous integration process

First of the steps in the continuous integration pipeline is often static analysis.

Static Analysis

Static analysis is the analysis of computer software that is performed without actually executing
programs. Like its opposite, the analysis performed while executing programs is known as dynamic
analysis.

The static analysis goals vary from highlighting possible coding errors to making sure that agreed
formatting is followed. While benefits of using static analysis are questionable, the effort required
to implement it is so small that there is no real reason not to use it.

I won’t provide a comprehensive list of tools since they vary from one programming language to

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 15

another. CheckStyle⁶ and FindBugs⁷ for Java, JSLint⁸ and JSHint⁹ for JavaScript, and PMD¹⁰ for a
variety of languages, are only a few examples.

Static analysis is often the first step in the pipeline for the simple reason that its execution tends to
be very fast and in most cases faster than any other step we have in the pipeline. While some might
argue the static analysis usefulness, it comes at almost no cost, so there is no real reason not to use
it. All we have to do is choose the tools and often spend a little up-front time in setting up the rules
we want them to use. From there on, the cost of the maintenance effort is close to nothing. Since it
should not take more than few seconds to run this step, the cost in time is also negligible.

Figure 2-2: Continuous integration pipeline: static analysis

With the static analysis set up, our pipeline just started, and we can move to pre-deployment testing.

Pre-Deployment Testing

Unlike (optional) static analysis, pre-deployment tests should be mandatory. I intentionally avoided
more specific name for those tests because it depends on the architecture, programming language,
and frameworks. As a rule of thumb, all types of tests that do not require code to be deployed to a
server should be run in this phase. Unit tests always fall into this category and with few others that
might be run as well. If, for example, you can execute functional tests without deploying the code,
run them now.

Pre-deployment testing is probably the most critical phase in continuous integration pipeline. While
it does not provide all the certainty that we need, and it does not substitute post-deployment
testing, tests run in this phase are relatively easy to write, should be very fast to execute and they
tend to provide much bigger code coverage than other types of tests (for example integration and
performance).

⁶http://checkstyle.sourceforge.net/
⁷http://findbugs.sourceforge.net/
⁸http://www.jslint.com/
⁹http://jshint.com/
¹⁰https://pmd.github.io/

http://checkstyle.sourceforge.net/
http://findbugs.sourceforge.net/
http://www.jslint.com/
http://jshint.com/
https://pmd.github.io/
http://checkstyle.sourceforge.net/
http://findbugs.sourceforge.net/
http://www.jslint.com/
http://jshint.com/
https://pmd.github.io/

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 16

Figure 2-3: Continuous integration pipeline: pre-deployment testing

Packaging and Deployment to the Test Environment

Once we did all types of verifications that could be done without actually deploying the application,
it is time to package it. Themethod to do it would depend on framework and programming language.
In the Java world we would create JAR or WAR file, for JavaScript we would minimize the code
and, maybe, send it to the CDN server, and so on and so forth. Some programming languages do not
require us to do anything in this phase except, maybe, compress all the files into a ZIP or TAR a file
for easier transfer to servers. An optional (but in the case of this book mandatory) step is to create a
container that contains not only the package but also all other dependencies our application might
need (libraries, runtime, application server, and so on).

Once deployment package is created, we can proceed to deploy it to a test environment. Depending
on the capacity of the servers you might need to deploy to multiple boxes with, for example, one
being dedicated to performance testing and the other for all the rest of tests that require deployment.

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 17

Figure 2-4: Continuous integration pipeline: packaging and deployment

Post-Deployment Testing

Once deployed to a test environment, we can execute the rest of the tests; those that could not be
run without deploying the application or a service as well as those that prove that the integration
was successful. Again, types of tests that can be run in this phase depend on frameworks and
programming language but, as a general rule, they include functional, integration and performance
tests.

Exact tools and technologies used to write and run those tests will depend on many aspects. My
personal preference is to use behavior-driven development for all functional tests that, at the same
time, act as acceptance criteria and Gatling¹¹ for performance tests.

Once the execution of post-deployment tests is finished successfully, continuous integration pipeline
is, in most cases, completed as well. Packages or artifacts we generated during the packaging and
deployment to test environment are waiting for further, usually manual, verifications. Later on, one
of the builds of the pipeline will be elected to be deployed to production. Means and details of
additional checks and deployment to production are not part of continuous integration. Every build
that passed the whole pipeline is considered integrated and ready for whatever comes next.

¹¹http://gatling.io/

http://gatling.io/
http://gatling.io/

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 18

Figure 2-5: Continuous integration pipeline: post-deployment testing

Many other things could be done in the pipeline. The steps presented here is a very general one and
often varies from case to case. For example, you might choose to measure code coverage and fail
when a certain percentage is not reached.

We’re not going into details right now but trying to get a general overview of the process so let us
move into continuous delivery and deployment.

Continuous Delivery and Deployment

The continuous delivery pipeline is in most cases the same as the one we would use for CI. The
major difference is in the confidence we have in the process and lack of actions to be taken after
the execution of the pipeline. While CI assumes that there are (mostly manual) validations to be
performed afterward, successful implementation of the CD pipeline results in packages or artifacts
being ready to be deployed to production. In other words, every successful run of the pipeline can
be deployed to production, no questions asked. Whether it will be deployed or not depends more on
political than technical decisions. The marketing department might want to wait until a certain date,

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 19

or they might want to go live with a group of features deployed together. No matter the decision
which build to deploy and when, from the technical perspective, the code of every successful build
is fully finished. The only difference between the continuous integration and continuous delivery
processes is that the later is not having the manual testing phase that is performed after the package
is promoted through the pipeline. Simply put, the pipeline itself provides enough confidence that
there is no need to manual actions. We are technically capable of deploying every promoted build.
Which one of those will be deployed to production is a decision often based on business or marketing
criteria where the company decides when does the package contain all the features they want to
release.

Figure 2-6: Continuous delivery process

Keep in mind that we continued using CI tool in the continuous delivery process diagram. The
reason behind this is that there is no substantial difference between CI and CD tools. That does
not mean that some products are not marketing themselves as CD tools. Many are. However, in my
experience, that is more of a marketing stunt because both processes are almost the same assuming

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 20

that processes are relying on a high level of automation.

Regarding the pipeline process, there is also no substantial difference between continuous inte-
gration and continuous delivery. Both go through the same phases. The real difference is in the
confidence we have in the process. As a result, the continuous delivery process does not have the
manual QA phase. It’s up to us to make a decision which one of the promoted packages will be
deployed to production.

Continuous deployment pipeline goes a step further and automatically deploys to production every
build that passed all verifications. It is a fully automated process that starts with a commit to the
code repository and ends with the application or the service being deployed to production. There
is no human intervention, nothing to decide and nothing to do but to start coding the next feature
while results of your work are finding their way to the users. In cases when packages are deployed to
QA server before being deployed to production, post-deployment testing is done twice (or as many
times are the number of servers we deploy to). In such a case, we might choose to run different
subsets of post-deployment tests. For example, we might run all of them on the software deployed
to QA server and only integration tests after deploying to production. Depending on the result of
post-deployment tests execution performed with software deployed to production, we might choose
to roll-back or enable the release to the general public. When proxy service is used to make a new
release visible to the public, there is usually no need to roll-back since the newly released application
was not made visible before the problem was detected.

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 21

Figure 2-7: Continuous deployment pipeline

We need to pay particular attention to databases (especially when they are relational) and ensure
that changes we are making from one release to another are backward compatible and can work
with both releases (at least for some time).

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 22

While continuous integration welcomes but does not necessarily requires deployed software to be
tested in production, continuous delivery and deployment have production (mostly integration)
testing as an absolute necessity and, in the case of continuous deployment, part of the fully
automated pipeline. Since there are no manual verifications, we need to be as sure as possible
that whatever was deployed to production is working as expected. That does not mean that all the
automated tests need to be repeated. It means that we need to run tests that prove that the deployed
software is integrated with the rest of the system. The fact that we run, possibly same, integration
tests in other environments does not mean that due to some differences, software deployed to
production continues to “play nicely” with the rest of the system.

Another very useful technique in the context of continuous deployment is feature toggles. Since
every build is deployed to production, we can use them to disable some features temporarily. For
example, we might have the login screen fully developed but without the registration. It would
not make sense to let the visitors know about a feature that requires another still not deployed
feature. Continuous delivery solves that problem by manually approving which build is deployed
to production and would choose to wait. Since, in the case of continuous deployment that decision-
making it not available, feature toggles are a must or we would need to delay merging with the
mainline until all related features are finished. However, we already discussed the importance of
constant merging with the mainline and such delays are against the logic behind CI/CD. While
there are other ways to solve this problem, I find feature toggles to be indispensable to all those
who choose to apply continuous deployment. We won’t go into feature toggles details. For those
interested obtaining more info, please visit the Feature Toggles (Feature Switches or Feature Flags)
vs Feature Branches¹² article.

Most teams start with continuous integration and slowly move towards delivery and deployment
since former are prerequisites for later. In this book, we’ll practice continuous deployment. Don’t be
scared. Everything we’ll do can be easily modified so that there are pauses andmanual interventions.
For example, we will be deploying containers directly to production (actually to VMs that imitate
production) without passing through test environments. When applying techniques from this book,
you can easily choose to add testing environment in between.

The important thing to note is that pipeline phases we discussed are performed in particular order.
That order is not only logical (for example, we cannot deploy before compiling) but also in order
of the execution time. Things that take less to run are run first. For example, as a general rule, pre-
deployment tests tend to run much faster than those we’ll run as post-deployment. The same rule
should be followed within each phase. If, for example, you have different types of tests within the
pre-deployment phase, run those that are faster first. The reason for this quest for speed is time until
we get feedback. The sooner we find out that there is something wrong with the commit, the better.
Ideally, we should get that feedback before we move to the next development task. Do the commit,
have a quick coffee, check your inbox and if there is no angry email stating that something failed,
move to the next task.

Later on, throughout this book, you’ll see that some of the phases and details of the presented
pipeline are a bit different due to advantages brought by microservices and containers. For example,

¹²http://technologyconversations.com/2014/08/26/feature-toggles-feature-switches-or-feature-flags-vs-feature-branches/

http://technologyconversations.com/2014/08/26/feature-toggles-feature-switches-or-feature-flags-vs-feature-branches/
http://technologyconversations.com/2014/08/26/feature-toggles-feature-switches-or-feature-flags-vs-feature-branches/
http://technologyconversations.com/2014/08/26/feature-toggles-feature-switches-or-feature-flags-vs-feature-branches/

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 23

packaging will finish with immutable (unchangeable) containers, deployment to a test environment
might not be required at all and we might choose to perform testing directly to the production
environment (with the help of blue/green technique), and so on. However, we are ahead of ourselves.
Everything will come in due time.

With CI/CD out of the way (for now), it is time to discuss microservices.

Microservices

We already spoke about the speed in the context of continuous deployment. This speed refers to the
time from conception of the idea about new functionality until it is fully operational and deployed to
production. We want to be able to move fast and provide the fastest possible time to market. If a new
functionality can be delivered in a matter of hours or days, business will start seeing benefits much
faster than if it takes weeks or months. That speed can be accomplished through multiple ways. For
example, we want the pipeline to be as fast as possible both in order to provide quick feedback in
case of a failure as to liberate resources for other queued jobs. We should aim at spending minutes
instead of hours from checking out the code to having it deployed to production. Microservices can
help accomplishing this timing. Running the whole pipeline for a huge monolithic application is
often slow. Same applies to testing, packaging, and deployment. On the other hand, microservices
are much faster for the simple reason that they are much smaller. Less code to test, less code to
package and less code to deploy.

We would not be switching to microservices if that would be the only reason. Later on, you’ll find
a whole chapter dedicated to a much deeper examination of microservices. For now, the important
thing to note is that due to the goals today’s competition sets in front of us, microservices are
probably the best type of architecture we can apply.

Containers

Before containers become common, microservices were painful to deploy. On the other hand,
monolithic applications are relatively simple to handle. We would, for example, create a single
artifact (JAR, WAR, DLL, and so on), deploy it to the server and make sure that all required
executables and libraries (for example JDKs) are present. This process was most of the time
standardized with relatively few things to think about. One microservice is equally simple but
when their number multiplies with ten, hundred or even thousand, things are starting to get
complicated. They might use different versions of dependencies, different frameworks, various
application servers, and so on. The number of stuff we have to think about starts rising exponentially.
After all, one of the reasons behind microservices is the ability to choose the best tool for the job.
One might better off if it’s written in GoLang while the other would be a better fit for NodeJS.
One could use JDK 7 while the other might need JDK 8. Installing and maintaining all that might
quickly turn servers into garbage cans and make people in charge of them go crazy. What was the
solution most were applying before? Standardize as much as possible. Everyone should use only JDK

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 24

7 for the back-end. All front-end should be done with JSP. The common code should be placed in
shared libraries. In other words, people tried to solve problems related to microservices deployment
applying the same logic they learned during years of development, maintenance, and deployment
of monolithic applications. Kill the innovation for the sake of standardization. And we could not
blame them. The only alternative were immutable VMs and that only changed one set of problems
for another. That is, until containers become popular and, more importantly, accessible to masses.

Docker¹³ made it possible to work with containers without suffering in the process. They made
containers accessible and easy to use to everyone.

What are containers? Definition of the word container is “an object for holding or transporting
something”. Most people associate containers with shipping containers. They should have strength
suitable to withstand shipment, storage, and handling. You can see them being transported with
a variety of ways most common of them being by ships. In big shipyards, you can find hundreds
or even thousands of them stacked one besides the other and one on top of the other. Almost all
merchandise is shipped through containers for a reason. They are standardized, easy to stack and
hard to damage. Most involved with shipping do not knowwhat’s inside them. Nobody cares (except
customs) because what is inside is irrelevant. The only important thing is to know where to pick
them and where to deliver them. It is a clear separation of concerns. We know how to handle them
from outside while their content is known only to those who packed them in the first place.

The idea behind “software” containers is similar. They are isolated and immutable images that
provide designed functionality in most cases accessible only through their APIs. They are a solution
to make our software run reliably and on (almost) any environment. No matter where they are
running (developer’s laptop, testing or production server, data center, and so on), the result should
always be the same. Finally, we can avoid conversations like the following.

QA: There is a problem with the login screen.

Developer: It works on my computer!

The reason such a conversation is obsolete with containers is that they behave in the same way no
matter the environment they’re running on.

The way containers accomplish this type of a feat is through self-sufficiency and immutability.
Traditional deployments would put an artifact into an existing node expecting that everything else is
in place; the application server, configuration files, dependencies, and so on. Containers, on the other
hand, contain everything our software needs. The result is a set of images stacked into a container
that contains everything from binaries, application server and configurations all the way down
until runtime dependencies and OS packages. This description leads to a question about differences
between a container and a VM. After all, all that we described by now is equally valid for both.

A physical server running, for example, five virtual machines would have five operating systems in
addition to a hypervisor that ismore resource demanding than lxc. Five containers, on the other hand,
share the operating system of the physical server and, where appropriate, binaries and libraries. As
a result, containers are much more lightweight than VMs. That is not such a big difference with

¹³https://www.docker.com/

https://www.docker.com/
https://www.docker.com/

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 25

monolithic applications especially in cases when a single one would occupy the whole server. With
microservices, this gain in resource utilization is critical considering that we might have tens or
hundreds of them on a single physical server. Put in other words, a single physical server can host
more containers than virtual machines.

Figure 2-8: Virtual machines and containers resources utilization comparison

The Three Musketeers: Synergy of Continuous
Deployment, Microservices, and Containers

Continuous deployment, microservices, and containers are a match made in heaven. They are like
the three musketeers, each capable of great deeds but when joined, capable of so much more.

With continuous deployment, we can provide continuous and automatic feedback of our applications
readiness and deployment to production thus increasing the quality of what we deliver and
decreasing the time to market.

Microservices provide us with more freedom to make better decisions, faster development and, as
we’ll see very soon, easier scaling of our services.

Finally, containers provide the solution to many of deployment problems; in general and especially
when working with microservices. They also increase reliability due to their immutability.

The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers 26

Together, they can combine all that and do so much more. Throughout this book, we’ll be on a quest
to deploy often and fast, be fully automatic, accomplish zero-downtime, have the ability to rollback,
provide constant reliability across environments, be able to scale effortlessly, and create self-healing
systems able to recuperate from failures. Any of those goals is worth a lot. Can we accomplish all
of them? Yes! Practices and tools we have at our disposal can provide all that, and we just need to
combine them correctly. The journey ahead is long but exciting. There are a lot of things to cover
and explore and we need to start from the beginning; we’ll discuss the architecture of the system
we are about to start building.

Knowing is not enough; we must apply. Willing is not enough; we must do.

– Johann Wolfgang von Goethe

System Architecture
From here on, the whole book will be one big project. We’ll go through all the stages starting from
development all the way until production deployment and monitoring. Each phase will begin with
a discussion about different paths we can take to accomplish the goal. We’ll choose the best given
our needs and implement it. The objective is to learn techniques that you can apply to your projects
so please feel free to adapt instructions to fit your needs.

As most other projects, this one will start with high-level requirements. Our goal is to create an
online shop. The complete plan is still not available, but we do know that selling books has priority.
We should design services and a Web application in a way that it can easily be extended. We do
not have the whole set of requirements in front of us, so we need to be prepared for the unknown.
Besides books, we’ll be selling other types of goods, and there will be other kinds of functionality
like a shopping cart, registration and login, and so on. Our job is to develop bookstore and be able
to respond to the future requirements in a fast manner. Since it is a new endeavor, not much traffic
is expected at the beginning, but we should be prepared to scale easily and quickly if the service
becomes successful. We want to ship new features as fast as possible without any downtime and to
be able to recuperate from failures.

Let us start working on the architecture. It is clear that requirements are very general and do not
provide many details. That means that we should be prepared for very likely changes in the future as
well as well as requests for new features. At the same time, business requires us to build something
small but be prepared to grow. How should we solve the problems given to us?

The first thing we should decide is how to define the architecture of the application we’re about to
build.Which approach will allow us possible changes of the direction, additional (but at this moment
unknown) requirements and the need to be ready to scale? We should start by examining two most
common approaches to applications architecture; monoliths and microservices.

Monolithic Applications

Monolithic applications are developed and deployed as a single unit. In the case of Java, the result
is often a single WAR or JAR file. Similar statement is true for C++, .Net, Scala and many other
programming languages.

Most of the short history of software development is marked by a continuous increment in size of
the applications we are developing. As time passes, we’re adding more and more to our applications
continuously increasing their complexity and size and decreasing our development, testing and
deployment speed.

We started dividing our applications into layers: presentation layer, business layer, data access layer,
and so on. This separation is more logical than physical, and each of those layers tends to be in

27

System Architecture 28

charge of one particular type of operations. This kind of architecture often provided immediate
benefits since it made clear the responsibility of each layer. We got separation of concerns on a high
level. Life was good. Productivity increased, time-to-market decreased and overall clarity of the code
base was better. Everybody seemed to be happy, for a while.

Figure 3-1: Monolithic application

With time, the number of features our application was required to support was increasing and with
that comes increased complexity. One feature on UI level would need to speakwithmultiple business
rules that in turn require multiple DAO classes that access many different database tables. No matter
how hard we try, the sub-division within each layer and communication between them gets ever
more complicated and, given enough time, developers start straying from the initial path. After all,
a design made initially often does not pass the test of time. As a result, modifications to any given
sub-section of a layer tends to be more complicated, time demanding and risky since they might
affect many different parts of the system with often unforeseen effects.

System Architecture 29

Figure 3-2: Monolithic application with increased number of features

As time passes, things start getting worse. In many cases, the number of layers increases. We might
decide to add a layer with a rules engine, API layer, and so on. As things usually go, the flow between
layers is in many cases mandatory. That results in situations where we might need to develop a
simple feature that under different circumstances would require only a few lines of code but, due
to the architecture we have, those few lines turn up to be hundreds or even thousands because all
layers need to be passed through.

The development was not the only area that suffered from monolithic architecture. We still needed
to test and deploy everything every time there was a change or a release. It is not uncommon in
enterprise environments to have applications that take hours to test, build and deploy. Testing,
especially regression, tends to be a nightmare that in some cases last for months. As time passes,
our ability to make changes that affect only one module is decreasing. The primary objective of
layers is to make them in a way that they can be easily replaced or upgraded. That promise is almost
never actually fulfilled. Replacing something in big monolithic applications is hardly ever easy and
without risks.

Scaling monoliths often mean scaling the entire application thus producing very unbalanced
utilization of resources. If we need more resources, we are forced to duplicate everything on a new
server even if a bottleneck is one module. In that case, we often end up with a monolith replicated
across multiple nodes with a load balancer on top. This setup is sub-optimum at best.

System Architecture 30

Figure 3-3: Scaling monolithic application

Services Split Horizontally

Service-oriented architecture (SOA) was created as a way to solve problems created by, often
tightly coupled, monolithic applications. The approach is based on four main concepts we should
implement.

• Boundaries are explicit
• Services are autonomous
• Services share schema and contract but not class
• Services compatibility is based on policy

SOA was such a big hit that many software provides jumped right in and created products that
should help us in the transition. The most used type born out of SOAmovement is Enterprise Service
Bus (ESB). At the same time, companies that experienced problems with monolithic applications
and big systems jumped into the train and started the SOA transition with ESB as the locomotive.

System Architecture 31

However, the common problem with this move is the way we are used working that often resulted
in an intention to artificially apply SOA architecture into the existing model.

We continued having the same layers as we had before, but this time physically separated from
each other. There is an apparent benefit from this approach in that we can, at least, develop and
deploy each layer independently from others. Another improvement is scaling. With the physical
separation between what used to be layers, we are allowed to scale better. That approach was often
combined with acquisitions of one of the enterprise service bus (ESB) products. In between services
we would put ESB that would be in charge of transformation and redirection of requests from one
service to another. ESB and similar products are beasts of their own and we often end up with
another monolithic application that is as big or even bigger than the one we tried to split. What we
needed was to break services by bounded contexts and separate them physically with each running
in their own process and with clearly defined communication between them. Thus, microservices
were born.

Microservices

Microservices are an approach to architecture and development of a single application composed
of small services. The key to understanding microservices is their independence. Each is developed,
tested and deployed separately from each other. Each service runs as a separate process. The only
relation between different microservices is data exchange accomplished through APIs they are
exposing. They inherit, in a way, the idea of small programs and pipes used in Unix/Linux. Most
Linux programs are small and produce some output. That output can be passed as input to other
programs. When chained, those programs can perform very complex operations. It is complexity
born from a combination of many simple units.

In a way, microservices use the concepts defined by SOA. Then why are the called differently?
SOA implementations went astray. That is especially true with the emergence of ESB products that
themselves become big and complex enterprise applications. In many cases, after adopting one of
the ESB products, the business went as usual with one more layer sitting on top of what we had
before. Microservices movement is, in a way, reaction to misinterpretation of SOA and the intention
to go back to where it all started. The main difference between SOA and microservices is that the
later should be self-sufficient and deployable independently of each other while SOA tends to be
implemented as a monolith.

Let’s see what Gartner has to say about microservices. While I’m not a big fan of their predictions,
they do strike the important aspect of the market by appealing to big enterprise environments. Their
evaluations of market tendencies usually mean that we passed the adoption by greenfield projects,
and the technology is ready for the big enterprises. Here’s what Gary Olliffe said about microservices
at the beginning of 2015.

Microservice architectures promise to deliver flexibility and scalability to the development and
deployment of service-based applications. But how is that promise delivered? In short, by adopting

System Architecture 32

an architecture that allows individual services to be built and deployed independently and
dynamically; an architecture that embraces DevOps practices.

Microservices are simpler, developers get more productive and systems can be scaled quickly and
precisely, rather than in large monolithic globs. And I havenâ€™t even mentioned the potential for

polyglot coding and data persistence.

Key aspects of microservices are as follows.

• They do one thing or are responsible for one functionality.
• Each microservice can be built by any set of tools or languages since each is independent of
others.

• They are truly loosely coupled since each microservice is physically separated from others.
• Relative independence between different teams developing different microservices (assuming
that APIs they expose are defined in advance).

• Easier testing and continuous delivery or deployment.

One of the problems with microservices is the decision when to use them. In the beginning, while
the application is still small, problems that microservices are trying to solve do not exist. However,
once the application grows and the case for microservices can be made, the cost of switching to a
different architecture style might be too big. Experienced teams tend to use microservices from the
very start knowing that technical debt they might have to pay later will be more expensive than
working with microservices from the very beginning. Often, as it was the case with Netflix, eBay,
and Amazon, monolithic applications start evolving towards microservices gradually. New modules
are developed as microservices and integrated with the rest of the system. Once they prove their
worth, parts of the existing monolithic application gets refactored into microservices as well.

One of the things that often gets most critique from developers of enterprise applications is
decentralization of data storage. While microservices can work (with few adjustments) using
centralized data storage, the option to decentralize that part as well should, at least, be explored.
The option to store data related to some service in a separate (decentralized) storage and pack it
together into the same container or as a separate one and link them together is something that
in many cases could be a better option than storing that data in a centralized database. I am not
proposing always to use decentralized storage but to have that option in account when designing
microservices.

Finally, we often employ some kind of a lightweight proxy server that is in charge of the
orchestration of all requests no matter whether they come from outside or from one microservice to
another.

System Architecture 33

Figure 3-4: Microservices with a proxy service

Armed with a basic knowledge about monoliths and microservices, let us compare the two and
evaluate their strengths and weaknesses.

Monolithic Applications and Microservices Compared

From what we learned by now, seems that microservices are a better option than monoliths.
Indeed, in many (but far from all) cases they are. However, there is no such thing as a free lunch.
Microservices have their set of disadvantageswith increased operational and deployment complexity,
and remote process calls being the most common.

Operational and Deployment Complexity

The primary argument against microservices is increased operational and deployment complexity.
This argument is correct, but thanks to relatively new tools it can be mitigated. Configuration
Management (CM) tools can handle environment setups and deployments with relative ease.
Utilization of containers with Docker significantly reduces deployment pains that microservices can
cause. CM tools together with containers allow us to deploy and scale microservices quickly.

In my opinion, increased deployment complexity argument usually does not take into account
advances we saw during last years and is greatly exaggerated. That does not mean that part of
the work is not shifted from development to DevOps. It is. However, benefits are in many cases
bigger than the inconvenience that change produces.

System Architecture 34

Remote Process Calls

Another argument for monolithic applications is reduced performance produced by microservices’
remote process calls. Internal calls through classes and methods are faster and this problem cannot
be removed. How much that loss of performance affects a system depends on case to case basis.
The important factor is how we split our system. If we take it towards the extreme with very
small microservices (some propose that they should not have more than 10-100 lines of code), this
impact might be considerable. I like to create microservices organized around bounded contexts
or functionality like users, shopping cart, products, and so on. That reduces the number of remote
process calls but still keep services organization within healthy boundaries. Also, it’s important to
note that if calls from onemicroservice to another are going through a fast internal LAN, the negative
impact is relatively small.

So, what are the advantages microservices have over monoliths? The following list is by no means
final nor it represents advantages only available with microservices. While many of them are valid
for other types of architecture, they are more prominent with microservices.

Scaling

Scaling microservices is much easier than monolithic applications. With monoliths, we duplicate the
whole application into a new machine. On the other hand, with microservices, we duplicate only
those that need scaling. Not only that we can scale what needs to be scaled but we can distribute
things better. We can, for example, put a service that has heavy utilization of CPU together with
another one that uses a lot of RAM while moving the other CPU demanding service to a different
hardware.

Innovation

Monolithic applications, once the initial architecture is made, do not leave much space for
innovation. I’d go even further and claim that monoliths are innovation killers. Due to their nature,
changing things takes time, and experimentation is perilous since it potentially affects everything.
One cannot, for example, change Apache Tomcat for NodeJS just because it would better suit one
particular module.

I’m not suggesting that we should change programming language, server, persistence, and other
architecture aspects for each module. However, monolithic servers tend to go to an opposite extreme
where changes are risky if not unwelcome. With microservices, we can choose what we think is the
best solution for each service separately. One might use Apache Tomcat while the other could use
NodeJS. One can be written in Java and the other in Scala. I’m not advocating that each service is
different from the rest but that each can be made in a way we think is best suited for the goal at
hand. On top of that, changes and experiments are much easier to do. After all, whatever we do
affects only one out of many microservices and not the system as a whole as long as the API is
respected.

System Architecture 35

Size

Since microservices are small, they are much easier to understand. There is much less code to
go through to see what one microservice is doing. That in itself greatly simplifies development,
especially when newcomers join the project. On top of that, everything else tends to be much faster.
IDEs work faster with a small project when compared to big ones used in monolithic applications.
They start faster since there are no huge servers nor an enormous number of libraries to load.

Deployment, Rollback and Fault Isolation

Deployment is much faster and easier with microservices. Deploying something small is always
quicker (if not easier) than deploying something big. In case we realized that there is a problem, that
problem has potentially limited effect and can be rolled back much easier. Until we roll back, the
fault is isolated to a small part of the system. Continuous delivery or deployment can be done with
speed and frequencies that would not be possible with big applications.

Commitment Term

One of the common problems with monolithic applications is commitment. We are often forced to
choose from the start the architecture and the technologies that will last for a long time. After all,
we’re building something big that should last for a long time. With microservices that need for a
long-term commitment is much smaller. Change the programming language in one microservice and
if it turns out to be a good choice, apply it to others. If the experiment failed or is not the optimum,
there’s only one small part of the system that needs to be redone. Same applies to frameworks,
libraries, servers, and so on. We can even use different databases. If some lightweight NoSQL seems
like the best fit for a particular microservice, why not use it and pack it into the container?

Let us go one step back and look at this subject from the prism of deployment. How do those two
architectural approaches differ when the time comes to deploy our applications.

Deployment Strategies

We already discussed that continuous delivery and deployment strategies require us to rethink all
aspects of the application lifecycle. That is nowhere more noticeable than at the very beginning
when we are faced with architectural choices. We won’t go into details of every possible deployment
strategy we could face but limit the scope to two major decisions that we should make. First one is
architecturally related to the choice between monolithic applications and microservices. The second
one is related to how we package the artifacts that should be deployed. More precisely, whether we
should perform mutable or immutable deployments.

System Architecture 36

Mutable Monster Server

Today, the most common way to build and deploy applications is as a mutable monster server. We
create a web server that has the whole application and update it every time there is a new release.
Changes can be in configuration (properties file, XMLs, DB tables, and so on), code artifacts (JARs,
WARs, DLLs, static files, and so on) and database schemas and data. Since we are changing it on
every release, it is mutable.

Withmutable servers, we cannot know for sure that development, test, and production environments
are the same. Even different nodes in the production might have undesirable differences. Code,
configuration or static files might not have been updated in all instances.

It is amonster server since it contains everything we need as a single instance. Back-end, front-end,
APIs, and so on. Moreover, it grows over time. It is not uncommon that after some time no one
is sure what is the exact configuration of all pieces in production and the only way to accurately
reproduce it somewhere else (new production node, test environment, and so on) is to copy the VM
where it resides and start fiddling with configurations (IPs, host file, DB connections, and so on). We
just keep adding to it until we lose the track of what it has. Given enough time, your “perfect” design
and impressive architecture will become something different. New layers will be added, the code
will be coupled, patches on top of patches will be created and people will start losing themselves
in the maze the code start looking like. Your beautiful little project will become a big monster. The
pride you have will become a subject people talk about on coffee breaks. People will start saying
that the best thing they could do is to throw it to trash and start over. But, the monster is already
too big to start over. Too much is invested. Too much time would be needed to rewrite it. Too much
is at stake. Our monolith might continue existing for a long time.

System Architecture 37

Figure 3-5: Mutable application server as initially designed

Mutable deployments might look simple, but they are usually not. By coupling everything into
one place, we are hiding complexity thus increasing the chance of discrepancies between different
instances.

Time to restart such a server when it receives a new release can be considerable. During that time
server is usually not operational. Downtime that the new release provokes is a loss of money and
trust. Today’s business expects us to operate 24/7 without any downtime, and it is not uncommon
that a release to production means night work of the team during which our services are not
available. Given such a situation, applying continuous deployment is a dream out of the reach.
It is a dream that can not become a reality.

Testing is also a problem. No matter how much we tested the release on development and test
environments, the first time it will be tried in production is when we deploy it and make it available
not only to our testers but also to all pf our users.

Moreover, fast rollback of such a server is close to impossible. Since it is mutable, there is no “photo”
of the previous version unless we create a snapshot of a whole virtual machine that brings up a
whole new set of problems.

By having architecture like this, we cannot fulfill all, if any, of the requirements described earlier. We
cannot deploy often, due to inability to produce zero-downtime and easily rollback. Full automation
is risky due to mutable nature of its architecture thus preventing us to be fast.

By not deploying often we are accumulating changes that will be released and, in that way, we are

System Architecture 38

increasing the probability of a failure.

To solve those problems, deployments should be immutable and composed of small, independent,
and self-sufficient applications. Remember, our goals are to deploy often, have zero-downtime, be
able to rollback any release, be automated and be fast. Moreover, we should be able to test the release
on production environment before users see it.

Immutable Server and Reverse Proxy

Each “traditional” deployment introduces a risk tied with changes that need to be performed
on the server. If we change our architecture to immutable deployments, we gain immediate
benefits. Provisioning of environments becomes much simpler since there is no need to think
about applications (they are unchangeable). Whenever we deploy an image or a container to the
production server, we know that it is precisely the same as the one we built and tested. Immutable
deployments reduce the risk tied to unknown. We know that each deployed instance is exactly
the same as the other. Unlike mutable deployment, when a package is immutable and contains
everything (application server, configurations, and artifacts) we stop caring about all those things.
They were packaged for us throughout the deployment pipeline and all we have to do is make
sure that the immutable package is sent to the destination server. It is the same package as the one
we already tested in other environments and inconsistencies that could be introduced by mutable
deployments are gone.

A reverse proxy can be used to accomplish zero-downtime. Immutable servers together with a
reverse proxy in a simplified form can be as follows.

First we start with a reverse proxy that points to our fully self-sufficient immutable application
package. This package could be a virtual machine or a container. We’ll refer to this application as
application image to establish a clear distinction frommutable applications. On top of the application
is a proxy service that routes all the traffic towards the final destination instead of exposing the server
directly.

System Architecture 39

Figure 3-6: Immutable application server deployed as an image (a virtual machine or a container)

Once we decide to deploy a new version, we do it by deploying a separate image to a separate server.
While in some cases we could deploy this image to the same server, more often than not, monolithic
applications are very resource demanding and we cannot have both on the same node without
affecting the performance. At this moment, we have two instances. One old (previous release) and
one new (latest release). All traffic still goes to the old server through the reverse proxy so users of our
application still do not notice any change. For them, we’re still running the old and proven software.
This is the right moment to execute the final set of tests. Preferably those tests are automatic and
part of the deployment process but manual verification is not excluded. For example, if changes were
done to front-end, we might want to do the final round of user experience tests. No matter what
types of tests are performed, they should all “attack” the new release bypassing the reverse proxy.
The good thing about those tests is that we are working with the future production version of the
software that resides on production hardware. We are testing production software and hardware
without affecting our users (they are still being redirected to the old version). We could even enable
our new release only to a limited number of users in the form of A/B testing.

To summarize, at this stage we have two instances of the server, one (the previous release) used by
our users and the other (the latest release) used for testing.

System Architecture 40

Figure 3-7: New release of the immutable application deployed to a separate node

Once we are finished with tests and are confident that the new release works as expected, all we
have to do is change the reverse proxy to point to the new release. The old one can stay for a while
in case we need to rollback the changes. However, for our users, it does not exist. All traffic is routed
to the new release. Since the latest release was up-and-running before we changed the routing, the
switch itself will not interrupt our service (unlike, for example, if we would need to restart the server
in case of mutable deployments). When the route is changed we need to reload our reverse proxy.
As an example, nginx maintains old connections until all of them are switched to the new route.

System Architecture 41

Figure 3-8: Poxy is rerouted to point to the new release

Finally, when we do not need the old version, we can remove it. Even better, we can let the next
release remove it for us. In the later case, when the time comes, release process will remove the older
release and start the process all over again.

Figure 3-9: The old release is removed

The technique described above is called blue-green deployment and has been in use for a long time.
We’ll be practicing it later on when we reach the Docker packaging and deployment examples.

System Architecture 42

Immutable Microservices

We can do even better than this. With immutable deployments, we can easily accomplish automa-
tism of the process. Reverse proxy gives us zero-downtime and, having two releases up and running
allows us to rollback easily. However, since we’re still dealing with one big application, deployment
and tests might take a long time to run. That in itself might prevent us from being fast and thus from
deploying as often as needed. Moreover, having everything as one big server increases development,
testing and deployment complexity. If things could be split into smaller pieces, we might divide
complexity into easily manageable chunks. As a bonus, having small independent services would
allow us to scale more easily. They can be deployed to the same machine, scaled out across the
network or multiplied if the performance of one of them becomes the bottleneck. Microservices to
the rescue!

With “monster” applications we tend to have decoupled layers. Front-end code should be separated
from the back-end, business layer from data access layer, and so on. With microservices, we should
start thinking in a different direction. Instead of having the business layer separated from the data
access layer, we would separate services. For example, users management could be split from the
sales service. Another difference is physical. While traditional architecture separates on a level of
packages and classes but still deploys everything together, microservices are split physically; they
might not even reside on the same physical machine.

Deployment of microservices follows the same pattern as previously described.

We deploy our microservice immutable image as any other software.

Figure 3-10: Immutable microservice deployed as an image (a virtual machine or a container)

When the time comes to release a new version of some microservice we deploy it alongside the older
version.

System Architecture 43

Figure 3-11: New release of the immutable microservice deployed alongside the old release

When that microservice release is properly tested we change the proxy route.

Figure 3-12: Poxy is re-configured to point to the new release

Finally, we remove the older version of the microservice.

System Architecture 44

Figure 3-13: The old release is removed

The only significant difference is that due to the size of microservices, we often do not need a
separate server to deploy the new release in parallel with the old one. Now we can truly deploy
often automatically, be fast with zero-downtime and rollback in case something goes wrong.

Technologically, this architecture might pose particular problems that will be the subject of the next
chapters. For now, let’s just say that those problems are easy to solve with the tools and processes
we have at our disposal.

Given our requirements that are poor at best and the advantages microservices bring over monoliths,
the choice is clear. We will be building our application using immutable microservices approach.
That decision calls for a discussion about the best practices we should follow.

Microservices Best Practices

Most of the following best practices can be applied to services oriented architecture in general.
However, with microservices, they become even more significant or beneficial. Following is a very
brief description that will be extended later on throughout the book when the time comes to apply
them.

Containers

Dealing with manymicroservices can quickly become a very complex endeavor. Each can be written
in a different programming language, can require a different (hopefully light) application server or
can use a different set of libraries. If each service is packed as a container, most of those problems will

System Architecture 45

go away. All we have to do is run the container with, for example, Docker and trust that everything
needed is inside it.

Containers are self-sufficient bundles that contain everything we need (with the exception of the
kernel), run in an isolated process and are immutable. Being self-sufficient means that a container
commonly has the following components.

• Runtime libraries (JDK, Python, or any other library required for the application to run)
• Application server (Tomcat, nginx, and so on)
• Database (preferably lightweight)
• Artifact (JAR, WAR, static files, and so on)

Figure 3-14: Self-sufficient microservice inside a container

System Architecture 46

Fully self-sufficient containers are the easiest way to deploy services but pose a few problems with
scaling. If we’d like to scale such a container on multiple nodes in a cluster, we’d need to make
sure that databases embedded into those containers are synchronized or that their data volumes are
located on a shared drive. The first option often introduces unnecessary complexity while shared
volumes might have a negative impact on performance. Alternative is to make containers almost
self-sufficient by externalizing database into a separate container. In such a setting there would be
two different containers per each service. One for the application and the other for the database. They
would be linked (preferably through a proxy service). While such a combination slightly increases
deployment complexity, it provides greater freedomwhen scaling. We can deploy multiple instances
of the application container or several instances of the database depending performance testing
results or increase in traffic. Finally, nothing prevents us to scale both if such a need arises.

Figure 3-15: Microservice inside a container with the separate database

Being self-sufficient and immutable allows us to move containers across different environments
(development, testing, production, and so on) and always expect the same results. Those same
characteristics combined with microservices approach of building small applications allows us to
deploy and scale containers with very little effort and much lower risk than other methods would
allow us.

However, there is a third commonly used combination when dealing with legacy systems. Even
though we might decide to gradually move from monolithic applications towards microservices,
databases tend to be the last parts of the system to be approved for refactoring. While this is far
from the optimal way to perform the transition, the reality, especially in big enterprises is that data
is the most valuable asset. Rewriting an application poses much lower risk than the one we’d be
facing if we decide to restructure data. It’s often understandable that management is very skeptical

System Architecture 47

of such proposals. In such a case we might opt for a shared database (probably without containers).
While such a decision would be partly against what we’re trying to accomplish with microservices,
the pattern that works best is to share the database but make sure that each schema or a group of
tables is exclusively accessed by a single service. The other services that would require that data
would need to go through the API of the service assigned to it. While in such a combination we do
not accomplish clear separation (after all, there is no clearer more apparent than physical), we can
at least control who accesses the data subset and have a clear relation between them and the data.
Actually, that is very similar to what is commonly the idea behind horizontal layers. In practice,
as the monolithic application grows (and with it the number of layers) this approach tends to get
abused and ignored. Vertical separation (even if a database is shared), helps us keep much clearer
bounded context each service is in charge of.

Figure 3-16: Microservices inside containers accessing the shared database

Proxy Microservices or API Gateway

Big enterprise front-ends might need to invoke tens or even hundreds of HTTP requests (as is the
case with Amazon.com). Requests often take more time to be invoked than to receive response data.
Proxy microservices might help in that case. Their goal is to invoke different microservices and
return an aggregated service. They should not contain any logic but only group several responses
together and respond with aggregated data to the consumer.

System Architecture 48

Reverse Proxy

Never expose microservice API directly. If there isn’t some orchestration, the dependency between
the consumer and the microservices becomes so big that it might remove freedom that microservices
are supposed to give us. Lightweight servers like nginx, Apache Tomcat, and HAProxy are excellent
at performing reverse proxy tasks and can easily be employed with very little overhead.

Minimalist Approach

Microservices should contain only packages, libraries, and frameworks that they truly need. The
smaller they are, the better. That is quite in contrast to the approach used with monolithic
applications. While previously we might have used JEE servers like JBoss that packed all the tools
that we might or might not need, microservices work best with much more minimalistic solutions.
Having hundreds of microservices with each of them having a full JBoss server becomes overkill.
Apache Tomcat, for example, is a much better option. I tend to go for even smaller solutions with,
for instance, Spray as a very lightweight RESTful API server. Don’t pack what you don’t need.

The same approach should be applied to OS level as well. If we’re deploying microservices asDocker
containers, CoreOS might be a better solution than, for example, Red Hat or Ubuntu. It’s free from
things we do not need allowing us to obtain better utilization of resources. However, as we’ll see
later, choosing OS is not always that simple.

Configuration Management

As the number of microservices grows, the need for Configuration Management (CM) increases.
Deployingmanymicroservices without tools like Puppet, Chef orAnsible (just to name few) quickly
becomes a nightmare. Actually, not using CM tools for any but simplest solutions is a waste, with
or without microservices.

Cross-Functional Teams

While no rule dictates what kinds of teams are utilized, microservices are done best when the team
working on one is multifunctional. A single team should be responsible for it from the start (design)
until the finish (deployment and maintenance). They are too small to be handled from one team to
another (architecture/design, development, testing, deployment andmaintenance teams). Preference
is to have a team that is in charge of the full lifecycle of a microservice. In many cases, one team
might be in charge of multiple microservices, but multiple teams should not be in charge of one.

API Versioning

Versioning should be applied to anyAPI, and this holds true for microservices as well. If some change
breaks the API format, it should be released as a separate version. In the case of public APIs as well
as those used by other internal services, we cannot be sure who is using them and, therefore, must
maintain backward compatibility or, at least, give consumers enough time to adapt.

System Architecture 49

Final Thoughts

Microservices as a concept existed for a long time. Take a look at the following example:

1 ps aux | grep jav[a] | awk '{print $2}' | xargs kill

The command listed above is an example of the usage of pipes in Unix/Linux. It consists of four
programs. Each of them is expecting an input (stdin) and/or an output (stdout). Each of them is
highly specialized and performs one or very few functions. While simple by themselves, when
combined those programs are capable performing some very complex operations. Same holds true
for most of the programs found in today’s Unix/Linux distributions. In this particular case, we’re
running ps aux that retrieves the list of all running processes and passing the output to the next
in line. That output is used by grep jav[a] to limit the results to only Java processes. Again, the
output is passed to whoever needs it. In this particular example, next in line is awk '{print $2}'

that does, even more, filtering and returns only the second column that happens to be the process
ID. Finally, xargs kill takes the output of awk as input and kills all processes that match IDs we
retrieved previously.

Those not used to Unix/Linux might think that the command we just examined is an overkill.
However, after a bit of practice, those workingwith Linux commands find this approach very flexible
and useful. Instead of having “big” programs that need to contemplate all possible use cases, we have
a lot of small programs that can be combined to fulfill almost any task we might need. It is a power
born out of utmost simplicity. Each program is small and created to achieve a very specific objective.
More importantly, they all accept clearly defined input and produce well-documented output.

Unix is, as far as I know, the oldest example of microservices still in use. A lot of small, specific, easy
to reason with services with well-defined interfaces.

Even though microservices exist for a long time, it is not a chance that they become popular only
recently. Many things needed to mature and be available for microservices to be useful to all but
selected few. Some of the concepts that made microservices widely used are domain-driven design,
continuous delivery, containers, small autonomous teams, scalable systems, and so on. Only when
all those are combined into a single framework microservices start to shine truly.

Microservices are used to create complex systems composed of small and autonomous services that
exchange data through their APIs and limit their scope to a very specific bounded context. From a
certain point of view, microservices are what object-oriented programming was initially designed to
be. When you read thoughts of some of the leaders of our industry and, especially, object-oriented
programming, their descriptions of best practices when absorbed for their logic and not the way
authors implemented them initially, are the reminiscence of what microservices are today. The
following quotes correctly describe some of the aspects of microservices.

The big idea is ‘messaging’. The key in making great and growable systems is much more to design
how its modules communicate rather than what their internal properties and behaviors should be.

– Alan Kay

System Architecture 50

Gather together those things that change for the same reason, and separate those things
that change for different reasons - Robert C. Martin

When implementing microservices, we tend to organize them to do only one thing or perform only
one function. This allows us to pick the best tools for each of the jobs. For example, we can code
them in a language that best suits the objective. Microservices are truly loosely coupled due to
their physical separation and provide a great level of independence between different teams as long
as APIs are clearly defined in advance. On top of that, with microservices, we have much faster
and easier testing and continuous delivery or deployment due to their decentralized nature. When
concepts we discussed are combined with the emergence of new tools, especiallyDocker, we can see
microservices in a new light and remove part of the problems their development and deployment
was creating earlier.

Still, do not take bits of advice from this book as something that should be applied to all cases.
Microservices are not an answer to all our problems. Nothing is. They are not the way all applications
should be created and no single solution fits all cases. With microservices, we are trying to solve
very specific problems and not to change the way all applications are designed.

Armed with the decision to develop our application around microservices, it is time to do something
practical. There is no coding without development environment so that will be our first goal. We’ll
create a development environment for our “fancy” books store service.

We had enough theory and the time is ripe to put this book in front of a computer. From now on,
most of the book will be a hands-on experience.

Setting Up the Development
Environment With Vagrant and
Docker
The development environment is often the first thing newcomers to the project need to face.
While each project is different, is it not uncommon for them to spend a whole day setting up the
environment, and many more days trying to understand how the application works.

How much time it takes to, for example, install JDK, setup local instance of JBoss server, do all
the configuration and all other, often complicated, things required for the back-end part of the
application. On top of that, add the time to do the same for the front-end when it is separated
from the back-end. How much time does it take to, for example, understand inner workings of some
monolithic application that has thousands, tens of thousands or even millions of lines of code split
into layers upon layers of what was initially thought as a good idea but with time ended up as
something that adds more complexity than benefits?

Development environment setup and simplicity are some of the areas where containers and
microservices can help a lot. Microservices are, by definition, small. How much time does it take
to understand a thousand (or less) lines of code? Even if you never programmed in the language
used in the microservice in front of you, it should not take a lot of time to understand what it does.
Containers, on the other hand, especially when combined with Vagrant, can make the development
environment setup feel like a breeze. Not only that the setup process can be painless and fast, but
the result can be as close as one can get to the production environment. Actually, with the exception
of hardware, it can be the same.

Before we start working on such an environment, let us discuss the technology behind the service
we are building.

Please note that the code that will be used throughout this book might change and, therefore, might
not fully reflect snippets from this book. While this might create occasional confusion, I thought you
might benefit from bug fixes (every code has them) and well as updates. Technology stack we’ll use
is so new that changes and improvements are coming on a daily basis, and I’ll try to include them in
the code even after this book has been released.

Combining Microservice Architecture and Container
Technology

The booksmicroservice (books-ms) that we’ll use throughout this book was created in a bit different
way than most microservices proponents tend to recommend.

51

Setting Up the Development Environment With Vagrant and Docker 52

Apart from things we already discussed the need for a service to be small, limited to a well-defined
bounded context, and so on, it is important to notice that most microservices are created only for the
back-end part of the system. Microservices proponents would split monolithic back-end into a lot of
small microservices but would often leave the front-end untouched. The result in those cases is an
overall architecture with monolithic front-end and back-end split into microservices. Why is that?
I think that the answer lies in technologies weâ€™re using. The way we are developing front-end is
not designed to be split into smaller pieces.

Server-side rendering is becoming history. While enterprise might not agree with that statement and
continues pushing for server-side frameworks that “magically” transform, for example, Java objects
to HTML and JavaScript, client-side frameworks will continue to increase in popularity slowly
sending the server-side page rendering into oblivion. That leaves us with client-side frameworks.
Single-page applications are what we tend to use today. AngularJS, React, ExtJS, ember.js and
others proved to be the next step in the evolution of front-end development. However, single-page
applications or not, most of them are promoting the monolithic approach to front-end architecture.

With back-end being split into microservices and front-end being monolithic, services we are
building do not truly adhere to the idea that each should provide a full functionality.We are supposed
to apply vertical decomposition and create small loosely coupled applications. However, in most
cases weâ€™re missing visual aspect inside those services.

All front-end functionality (authentication, inventory, shopping cart, and so on) is part of a single
application and communicates with back-end (most of the time through HTTP) that is split into
microservices. This approach is a big advancement when compared with a single monolithic
application. By keeping back-end services small, loosely coupled, designed for a single purpose and
easy to scale, some of the problems we had with monoliths become mitigated. While nothing is
ideal, and microservices have their set of problems, finding production bugs, testing, understanding
the code, changing framework or even language, isolation, responsibility and other things became
easier to handle. The price we had to pay was deployment, but that was significantly improved with
containers (Docker) and the concept of immutable servers.

If we see the benefits microservices are providing with the back-end, wouldn’t it be a step forward
if we could apply those benefits to the front-end as well and design microservices to be complete
with not only back-end logic but also visible parts of our applications? Wouldn’t it be beneficial
if a developer or a team could fully develop a feature and let someone else just import it into the
application? If we could do business in that way, front-end (SPA or not) would be reduced to a
scaffold that is in charge only of routing and deciding which services to import.

Iâ€™m not trying to say that no one is developing microservices in such a way that both front-
end and back-end are part of it. I know that there are projects that do just that. However, I was
not convinced that benefits of splitting the front-end into parts and packing them together with
back-end outweigh downsides of such an approach. That is, until web components came into being.

I won’t go into details how web components work since one of the goals of this book is to be
language-agnostic (as much as that is possible). If you’re interested to know more about the subject,

Setting Up the Development Environment With Vagrant and Docker 53

please visit the Including Front-End Web Components Into Microservices/¹⁴ article.

For now, the important thing to note is that the books-ms that we are about to start using has both
the front-end web components and the back-end API packed into a single microservice. That allows
us to keep the full functionality in one place and use it as we see fit. Someone might invoke the
service API while someone else might decide to import web components into their Web site. As the
authors of the service, we should not care much who is using it but only that it provides all the
functionality potential users might require.

The service itself is coded using Scala¹⁵ with Spray¹⁶ that serves API requests and static front-end
files.Web components are donewith Polymer¹⁷. Everything is coded using test-driven development¹⁸
approach that produced both unit and functional/integration tests. The source code is located in the
vfarcic/books-ms¹⁹ GitHub repository.

Don’t worry if you never worked with Scala or Polymer. We won’t be going into more details nor are
we going to develop this application further. We’ll use it to demonstrate concepts and to practice. For
now, we’ll use this service to setup the development environment. Before we do that, let us briefly
go through the tools we’ll use for this task.

Vagrant and Docker

We’ll set up our development environment using Vagrant²⁰ and Docker²¹.

Vagrant is a command-line tool for creating and managing virtual machines through a hypervisor
like VirtualBox²² or VMWare²³. Vagrant isn’t a hypervisor, just a driver that provides a consistent
interface. With a single Vagrantfile, we can specify everything Vagrant needs to know to create,
through VirtualBox or VMWare, as many VMs as needed. Since all it needs is a single configuration
file, it can be kept in the repository together with the application code. It is very lightweight and
portable and allows us to create reproducible environments no matter the underlying OS. While
containers make the usage of VMs partly obsolete, Vagrant shines when we need a development
environment. It’s been used, and battle tested, for years.

Please note that containers do not always replace VMs. Virtual machines provide an additional layer
of isolation (security). They, also, allow more permutations than containers. With VMs, you could
run Android if youwanted to. VMs are complimentary to containers. As Kelsey Hightower (formerly
CoreOS, now Google) says “If you replace all your VMs with containers, I look forward to seeing how

¹⁴http://technologyconversations.com/2015/08/09/including-front-end-web-components-into-microservices/
¹⁵http://www.scala-lang.org/
¹⁶http://spray.io/
¹⁷https://www.polymer-project.org
¹⁸http://technologyconversations.com/2014/09/30/test-driven-development-tdd/
¹⁹https://github.com/vfarcic/books-ms
²⁰https://www.vagrantup.com/
²¹https://www.docker.com/
²²https://www.virtualbox.org/
²³http://www.vmware.com/

http://technologyconversations.com/2015/08/09/including-front-end-web-components-into-microservices/
http://www.scala-lang.org/
http://spray.io/
https://www.polymer-project.org
http://technologyconversations.com/2014/09/30/test-driven-development-tdd/
https://github.com/vfarcic/books-ms
https://www.vagrantup.com/
https://www.docker.com/
https://www.virtualbox.org/
http://www.vmware.com/
http://technologyconversations.com/2015/08/09/including-front-end-web-components-into-microservices/
http://www.scala-lang.org/
http://spray.io/
https://www.polymer-project.org
http://technologyconversations.com/2014/09/30/test-driven-development-tdd/
https://github.com/vfarcic/books-ms
https://www.vagrantup.com/
https://www.docker.com/
https://www.virtualbox.org/
http://www.vmware.com/

Setting Up the Development Environment With Vagrant and Docker 54

your site was hacked on the front page of HackerNews.” That being said, containers reduce the usage
of VMs. While it is still debatable whether we should run containers on “bare metal” or inside VMs,
there is no need anymore to waste resources by creating one VM per application or service.

Docker containers allow us to wrap up some software in a complete filesystem. They can contain
everything that software needs to run with complete autonomy; code, runtime libraries, database,
application server, and so on. Since everything is packed together, containers will run the same no
matter the environment. Containers share the kernel of the host OS making them more lightweight
than virtual machines since they require a fully operational operating system. One single server
can host many more containers than VMs. Another noticeable feature is that they provide process
isolation. That isolation is not as solid as the one offered by virtual machines. However, VMs are
much heavier than containers, and it would be very inefficient to pack each microservice into a
separate VM. Containers, on the other hand, are a perfect fit for that task. We can pack each service
into a separate container, deploy them directly on top of OS (without VMs in between) and still
maintain the isolation between them. Apart from the kernel, nothing is shared (unless we choose
to) and each container is a world in itself. At the same time, unlike VMs, containers are immutable.
Each is a set of unchangeable images, and the only way to deploy a new release is to build a new
container and replace the running instance of the old release. Later on, we’ll discuss strategies for
blue-green deployment that will run both releases in parallel, but that is the subject of one of the
next chapters. As you will soon discover, containers can have a much broader usage than running
production software.

Just like Vagrantfile that defines everything needed for Vagrant to create a virtual machine, Docker
has Dockerfile that contains instructions how to build a container.

At this point, you might be asking why do we need Vagrant if Docker does the same and more?
We’ll use it to bring up a virtual machine with Ubuntu OS²⁴. I could not be sure which operating
system you are using. You might be a Windows user or an OS X fan. You might prefer one of Linux
distributions. This book, for example, is written on Ubuntu as it is my OS of choice. The decision
was made to use VMs to ensure that all the commands and tools throughout this book work on
your computer no matter the underlying OS. Right now we are about to start one as an example
of setting up the development environment. Later on, we’ll create many more. They will simulate
testing, staging, production, and other types of environments. We’ll use Ubuntu²⁵ and a few more
operating systems. That does not mean that you should use Vagrant VMs as presented in this book
when you try to apply what you learned. While they are useful for development scenarios and for
trying new things, you should reconsider deploying containers directly on top an of OS installed on
“bare metal” or to a production ready VM.

The time has come to stop talking andmove towards more practical parts. Throughout the rest of this
book, I will assume that Git²⁶ and Vagrant²⁷ are installed on your computer. There will be no other
requirement. Everything else you might need will be provided through instructions and scripts.

²⁴http://www.ubuntu.com/
²⁵http://www.ubuntu.com/
²⁶https://git-scm.com/
²⁷https://www.vagrantup.com/downloads.html

http://www.ubuntu.com/
http://www.ubuntu.com/
https://git-scm.com/
https://www.vagrantup.com/downloads.html
http://www.ubuntu.com/
http://www.ubuntu.com/
https://git-scm.com/
https://www.vagrantup.com/downloads.html

Setting Up the Development Environment With Vagrant and Docker 55

If you are using Windows, please make sure that Git is configured to use “Checkout as-is”. That can
be accomplished during the setup by selecting the second or third options from the screen depicted
in the Figure 4-1. Also, if you do not have SSH installed, please make sure that [PATH_TO_GIT]\bin
is added to your PATH.

Figure 4-1: On Windows, “Checkout as-is” option should be selected during the Git setup

Development Environment Setup

Let us start by cloning the code from the books-ms²⁸ GitHub repository.

1 git clone https://github.com/vfarcic/books-ms.git

2

3 cd books-ms

With the code downloaded we can proceed and create the development environment.

Vagrant

Creating a Vagrant virtual machine is easy.

²⁸https://github.com/vfarcic/books-ms

https://github.com/vfarcic/books-ms
https://github.com/vfarcic/books-ms

Setting Up the Development Environment With Vagrant and Docker 56

1 vagrant plugin install vagrant-cachier

2

3 vagrant up dev

The first command is not mandatory, but it will help speeding up the creation of new VMs. It caches
all packages that are being used so that the next time we need them, they are obtained from the
local HD instead being downloaded. The second command does the “real” work. It brings up the
VM called dev. The first attempt might take some time since everything, starting with the base box,
needs to be downloaded. Bringing up this VM will be much faster each consecutive time. Bringing
up any other Vagrant VM based on the same box (in this case ubuntu/trusty64) will be fast.

Please note that some of the commands we’ll be executing throughout the book might require a
substantial time to finish. As a general rule, feel free to continue reading while commands are
running (at least until you are asked to run a new command). Let us use the time needed to bring
up the VM to go through the Vagrantfile²⁹ located in the root of the code we just cloned. It contains
all the information Vagrant needs to create the development environment VM. The contents are as
follows.

1 Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

2 config.vm.box = "ubuntu/trusty64"

3 config.vm.synced_folder ".", "/vagrant"

4 config.vm.provider "virtualbox" do |v|

5 v.memory = 2048

6 end

7 config.vm.define :dev do |dev|

8 dev.vm.network "private_network", ip: "10.100.199.200"

9 dev.vm.provision :shell, path: "bootstrap.sh"

10 dev.vm.provision :shell,

11 inline: 'PYTHONUNBUFFERED=1 ansible-playbook \

12 /vagrant/ansible/dev.yml -c local'

13 end

14 if Vagrant.has_plugin?("vagrant-cachier")

15 config.cache.scope = :box

16 end

17 end

For those unfamiliar with Ruby, the syntax might look a bit cryptic but after a very short practice,
you’ll notice that it is very easy and straightforward to define one or more VMs with Vagrant. In
our case, we started by specifying the box to be ubuntu/trusty64.

Vagrant boxes are the package format for Vagrant environments. Anyone can use a box,
on any platform supported by Vagrant, to bring up an identical working environment.

²⁹https://github.com/vfarcic/books-ms/blob/master/Vagrantfile

https://github.com/vfarcic/books-ms/blob/master/Vagrantfile
https://github.com/vfarcic/books-ms/blob/master/Vagrantfile

Setting Up the Development Environment With Vagrant and Docker 57

In other words, the box is (a kind of) a VM on top of which we can add things we require. You can
browse available boxes from Atlas³⁰ or create your own³¹.

After the box, comes the specification that local directory should be synced with VM. In our case,
we set that the current directory (.) should be synced with the /vagrant directory inside the VM.
This way, all the files from the current directory will be freely available within the virtual machine.

Moving on, we specified that the VM should have 2 GB of RAM and defined one VM called dev.
Further on, throughout the book, we’ll see how we can specify multiple virtual machines within the
same Vagrantfile.

Inside the definition of the dev VM, we set the IP that Vagrant will expose and that it should run the
Ansible playbook dev.yml. We won’t go into more details regarding Ansible since that is reserved for
one of the next chapters. Suffice to say that Ansible will make sure thatDocker and Docker Compose
are up and running.

We’ll use Vagrant on many occasions throughout this book so you’ll have plenty of opportunities
to learn more about it. However, this book does not provide detailed guidelines and documentation.
For more information and the complete documentation, please visit the Vagrant’s official site³².

Hopefully, you have a fast internet connection and by this time, execution of vagrant up probably
finished. If not, grab a coffee and have a short break.

Let us enter the VM we just created and take a look what’s inside.

1 vagrant ssh dev

2

3 ansible --version

4

5 docker --version

6

7 docker-compose --version

8

9 cd /vagrant

10

11 ll

The first command allows us to enter inside the dev VM. You will be greeted with Ubuntu’s welcome
message. The next three are just demonstrations that Ansible, Docker and Docker Compose are
installed. Finally, we’re entering the /vagrant directory and listing its content. You’ll notice that
it is the same as the host directory where we cloned the GitHub repository. Both of them are
synchronized.

Now that we have the VM with all the software up and running, let us take a look at our second star
of this chapter.

³⁰https://atlas.hashicorp.com/boxes/search
³¹http://docs.vagrantup.com/v2/boxes/base.html
³²https://www.vagrantup.com/

https://atlas.hashicorp.com/boxes/search
http://docs.vagrantup.com/v2/boxes/base.html
https://www.vagrantup.com/
https://atlas.hashicorp.com/boxes/search
http://docs.vagrantup.com/v2/boxes/base.html
https://www.vagrantup.com/

Setting Up the Development Environment With Vagrant and Docker 58

Docker

We already had a short discussion about Docker and containers in general. Never the less, we might
want to explore the subject a bit more. There were very few technologies that experienced such a
fast adoption. What makes Docker so popular?

VM hypervisors are all based on emulating virtual hardware. A huge percentage of resources VMs
use is spent on that emulation. The exact percentage depends on specific configurations of each VM,
but it is not uncommon to spend 50% or more of hardware resources on hardware virtualization.
What that means in practical terms is that they are very demanding on resources.

Docker, on the other hand, uses shared OS. That feature alone makes it much more efficient. With
well-defined containers, we can easily have 5 times more applications running than when they are
deployed to separate virtual machines. By using the host kernel, containers manage to maintain
almost the same separation between processes without the hardware virtualization. Even if Docker
does not bring anything else to the table, that would be enough for many to start using it.

Curious thing is that many think that containers are something new that came into being with
Docker. The reality is that they’ve been in use at least from the year 2000. Oracle Solaris Zones³³,
LXC³⁴ and OpenVZ³⁵ are few of the examples. Google is one of the companies that started using
containers long time before Docker emerged. The question you might ask is what makes Docker so
special if containers existed long before its first release. Docker made it easy for us to use containers
and is built on top of LXC. It made useful technology simple to use and built a very powerful
ecosystem around it.

Docker company quickly become the partner with almost all software industry leaders (Canonical,
RedHat, Google, Microsoft, and so on) and managed to standardize containers. This partnership also
brought containers to almost all operating systems. At the time of this writing, Windows Server 2016
technical preview was released featuring Docker engine running natively.

Developers and DevOps love it since it provides them with a very easy and reliable way to pack,
ship and run self-sufficient applications that can be deployed virtually anywhere. Another important
Docker tool is the Hub³⁶ that contains official, unofficial and private containers. Whatever you need,
be it an application, server, database or anything in between, chances are you will be able to find it
in the Docker Hub and have it up and running with a single command in a matter of minutes.

There’s much more to Docker (and containers in general) than what we discussed and you’ll see
throughout this book many different usages and test cases. For now, let’s see how we can utilize
Docker to help us with the development environment.

³³http://www.oracle.com/technetwork/server-storage/solaris11/technologies/virtualization-306056.html
³⁴https://linuxcontainers.org/
³⁵http://openvz.org/Main_Page
³⁶https://hub.docker.com/

http://www.oracle.com/technetwork/server-storage/solaris11/technologies/virtualization-306056.html
https://linuxcontainers.org/
http://openvz.org/Main_Page
https://hub.docker.com/
http://www.oracle.com/technetwork/server-storage/solaris11/technologies/virtualization-306056.html
https://linuxcontainers.org/
http://openvz.org/Main_Page
https://hub.docker.com/

Setting Up the Development Environment With Vagrant and Docker 59

Development Environment Usage

At this moment, we won’t go into details how to writeDockerfile, build containers, and push them to
the public or a private registry. Those will be the subjects of following chapters. At the moment, we’ll
focus on running pre-made containers. In particular, vfarcic/books-ms-tests³⁷ container. It contains
everything developers might need in order to work with the books-ms service that we cloned.

The container itself contains MongoDB, NodeJS, NPM, Git, Java, Scala, SBT, FireFox, Chrome and
Gulp. It has all the Java and JavaScript libraries required by the project, configurations properly set,
and so on. If you happen to work with all those languages and frameworks, you probably already
have them installed on your computer. However, the chances are that you work only with some of
them and lack the others. Even if you have everything already installed, you’d need to download
Scala and JavaScript dependencies, fiddle with some configurations, run your instance of MongoDB,
and so on. Instructions for this single microservice could be imposing. Now, multiply that with tens,
hundreds or even thousands of microservices your enterprise might need. Even if you work only on
one or very few of them, you would probably need to run some done by others. For example, your
service might need to communicate with services done by some other team. While I am a strong
believer that those cases should be solved with well-defined mocks, sooner or later you’ll run into a
situation when mocks are just not good enough.

There are different types of development tasks that we might need to perform with the books-ms
service. Remember, it contains both the back-end (Scalawith Spray) and front-end (JavaScript/HTM-
L/CSS with PolymerJS).

We can, for example, execute Gulp³⁸ watcher that will run all front-end tests every time there is
any change in client’s source code. Getting continuous feedback of the correctness of your code is
especially useful if you are practicing test-driven development. For more information regarding the
way front-endwas developed, please consult the Developing Front-EndMicroservicesWith Polymer
Web Components and Test-Driven Development³⁹ article series.

The following command runs the watcher.

1 sudo docker run -it --rm \

2 -v $PWD/client/components:/source/client/components \

3 -v $PWD/client/test:/source/client/test \

4 -v $PWD/src:/source/src \

5 -v $PWD/target:/source/target \

6 -p 8080:8080 \

7 --env TEST_TYPE=watch-front \

8 vfarcic/books-ms-tests

³⁷https://hub.docker.com/r/vfarcic/books-ms-tests/
³⁸http://gulpjs.com/
³⁹http://technologyconversations.com/2015/08/09/developing-front-end-microservices-with-polymer-web-components-and-test-driven-

development-part-15-the-first-component/

https://hub.docker.com/r/vfarcic/books-ms-tests/
http://gulpjs.com/
http://technologyconversations.com/2015/08/09/developing-front-end-microservices-with-polymer-web-components-and-test-driven-development-part-15-the-first-component/
http://technologyconversations.com/2015/08/09/developing-front-end-microservices-with-polymer-web-components-and-test-driven-development-part-15-the-first-component/
https://hub.docker.com/r/vfarcic/books-ms-tests/
http://gulpjs.com/
http://technologyconversations.com/2015/08/09/developing-front-end-microservices-with-polymer-web-components-and-test-driven-development-part-15-the-first-component/
http://technologyconversations.com/2015/08/09/developing-front-end-microservices-with-polymer-web-components-and-test-driven-development-part-15-the-first-component/

Setting Up the Development Environment With Vagrant and Docker 60

A lot of layers need to be downloaded before this container is run. The container occupies around
2.5GB of virtual space (the actual physical size is much smaller). Unlike production containers that
should be as small as possible, those used in development tend to be much bigger. For example, only
NodeJS modules occupy almost 500MB, and those are just the front-end development dependencies.
Add Scala libraries, runtime executables, browsers, and so on. Things sum up pretty quickly.
Hopefully, you have a fast internet connection, and it won’t take long until all the layers are pulled.
Feel free to continue reading until the download is done or until you reach the instruction to run
another command.

Parts of the output should be as follows (timestamps are removed for brevity).

1 ...

2 MongoDB starting : pid=6 port=27017 dbpath=/data/db/ 64-bit host=072ec2400bf0

3 ...

4 allocating new datafile /data/db/local.ns, filling with zeroes...

5 creating directory /data/db/_tmp

6 done allocating datafile /data/db/local.ns, size: 16MB, took 0 secs

7 allocating new datafile /data/db/local.0, filling with zeroes...

8 done allocating datafile /data/db/local.0, size: 64MB, took 0 secs

9 waiting for connections on port 27017

10 ...

11 firefox 43 Tests passed

12 Test run ended with great success

13

14 firefox 43 (93/0/0)

15 ...

16 connection accepted from 127.0.0.1:46599 #1 (1 connection now open)

17 [akka://routingSystem/user/IO-HTTP/listener-0] Bound to /0.0.0.0:8080

18 ...

We just run 93 tests using Firefox, run the MongoDB and started the Web server with Scala and
Spray. All Java and JavaScript dependencies, runtime executables, browser, MongoDB, JDK, Scala,
sbt, npm, bower, gulp and everything else we might need are inside this container. All that was
accomplished with a single command. Go ahead and change the client source code located in the
client/components directory or tests in the client/test. You’ll see that as soon as you save changes,
tests will run again. Personally, I tend to keep my screen split in two. The first half with the code
and the other half with the terminal when those tests are running in. We got a continuous feedback
with a single command and no installations or setup of any kind.

As mentioned above, it’s not only front-end tests that we are running with this command but also
the Web server and MongoDB. With those two we can see the result of our work by opening the
http://10.100.199.200:8080/components/tc-books/demo/index.html⁴⁰ in your favorite browser. What
you see is a demo of Web components that we are going to use later on.

⁴⁰http://10.100.199.200:8080/components/tc-books/demo/index.html

http://10.100.199.200:8080/components/tc-books/demo/index.html
http://10.100.199.200:8080/components/tc-books/demo/index.html

Setting Up the Development Environment With Vagrant and Docker 61

Wewon’t go into details of what each argument in the commandwe just runmeans. That is reserved
for one of the next chapters when we’ll explore Docker CLI in more depth. The important thing
to notice is that we run the container that was downloaded from the Docker Hub. Later on, we’ll
install our own registry where we’ll store our containers. Another important thing is that a few local
directories are mounted as container volumes allowing us to change the source code files locally and
use them inside the container.

The major problem with the command above is its length. I, for one, am not capable remembering
such a long command, and we cannot expect all developers to know it either. While what we did
by now is by far easier than alternative methods for setting up the development environment, this
command in itself clashes with the simplicity we’re trying to accomplish. Much better way to run
Docker commands is through Docker Compose⁴¹. Again, we’ll reserve deeper explanation for one
of the next chapter. For now, let us just get a taste of it. Please stop the container that is currently
running by pressing CTRL+c and run the following command.

1 sudo docker-compose -f docker-compose-dev.yml run feTestsLocal

As you can see the result is the same but the command is this time much shorter. All the arguments
needed for this container to run are stored in the docker-compose-dev.yml⁴² file under the target
feTestsLocal. The configuration file is using YAML (Yet Another Markup Language) format that is
very easy to write and read for those who are familiar with Docker.

That was only one of many usages of this container. Another one, out of many more, is to run all
tests once (both back-end and front-end), compile Scala code and minify and prepare JavaScript and
HTML files for the distribution.

Before proceeding, please stop the container that is currently running by pressing CTRL+c and run
the following.

1 sudo docker-compose -f docker-compose-dev.yml run testsLocal

This time, we did even more. We started MongoDB, run back-end functional and unit tests, stopped
the DB, run all front-end tests and, finally, created the JAR file that will be used later on to create
the distribution that will, ultimately, be deployed to the production (or, in our case, imitation of the
production) node. Later on, we’ll use the same container when we start working on our continuous
deployment pipeline.

We won’t need the development environment anymore, so let’s stop the VM.

⁴¹https://docs.docker.com/compose/
⁴²https://github.com/vfarcic/books-ms/blob/master/docker-compose-dev.yml

https://docs.docker.com/compose/
https://github.com/vfarcic/books-ms/blob/master/docker-compose-dev.yml
https://docs.docker.com/compose/
https://github.com/vfarcic/books-ms/blob/master/docker-compose-dev.yml

Setting Up the Development Environment With Vagrant and Docker 62

1 exit

2

3 vagrant halt dev

That was another one of the advantages of Vagrant. VMs can be started, stopped or destroyed with a
single command. However, even if you choose the later option, a new one can be as easily recreated
from scratch. Right now, the VM is stopped. We might need it later and next time it won’t take that
long to start it. With the vagrant up dev, it will be up and running in a matter of seconds.

This chapter served two purposes. First one was to show you that, with Vagrant and Docker, we
can setup development environment in a much easier and faster way than with the more traditional
approaches. The second purpose was to give you a taste of what is to come. Soonwe’ll exploreDocker
and Docker Compose in more depth and start building, testing and running containers. Our goal
will be to start working on the deployment pipeline. We’ll begin by running commands manually.
Next chapter with deal with basics and from there on we’ll slowly progress towards more advanced
techniques.

Implementation of the Deployment
Pipeline: Initial Stages
Let us start with some basic (andminimum) steps of the continuous deployment pipeline.We’ll check
out the code, run pre-deployment tests and, if they are successful, build a container and push it to the
Docker registry. With the container safely available in the registry, we’ll switch to a different VM
that will serve as an imitation of a production server, run the container and perform post-deployment
tests to ensure that everything works as expected.

Those steps will cover the most basic flow of what could be considered the continuous deployment
process. Later on, in the next chapters, once we are comfortable with the process we did so far, we’ll
go ever further. We’ll explore all the steps required for our microservice to safely and reliably reach
the production servers with zero-downtime, in a way that allows us to scale easily, with the ability
to rollback, and so on.

Spinning Up the Continuous Deployment Virtual
Machine

We’ll start by creating the continuous delivery server. We’ll do that by creating a VM with Vagrant.
While using VMs is useful as a mean to perform easy to follow exercises, in the “real world” scenario
you should skip VM altogether and install everything directly on the server. Remember, containers
are in many cases a better substitute for some of the things we are used to doing with VMs and using
both, as we’ll do throughout this book, is in most case only a waste of resources. With that being
said, let us create the cd and prod VMs. We’ll use the first one as a continuous deployment server
and the second as an imitation of the production environment.

1 cd ..

2

3 git clone https://github.com/vfarcic/ms-lifecycle.git

4

5 cd ms-lifecycle

6

7 vagrant up cd

8

9 vagrant ssh cd

We cloned the GitHub repository, brought up the cd virtual machine and entered it.

63

Implementation of the Deployment Pipeline: Initial Stages 64

There are a few basic Vagrant operations you might need to know to follow this book. Specifically,
how to stop and run the VM again. You never know when you might be left with an empty battery
on your laptop or have a need to free your resources for some other tasks. I wouldn’t like you to get
into a situation where you are not able to follow the rest of the book just because you shut down
your laptop and was not able to get back to the same situation you were before. Therefore, let’s go
through two basic operations; stopping the VM and bringing it up again with the provisioners.

If you want to stop this VM, all you have to do is run the vagrant halt command.

1 exit

2

3 vagrant halt

After this, VM will be stopped and your resources free for other things. Later on, you can start the
VMs again with the vagrant up.

1 vagrant up cd --provision

2

3 vagrant ssh cd

The --provision flag will, among other things, make sure that all the containers we need are indeed
up and running. The prod VM, unlike the cd, does not use any provisioning, so the --provision

argument is not needed.

Deployment Pipeline Steps

With the VM up and running (or soon to be), let us quickly go through the process. We should
perform the following steps.

1. Check out the code
2. Run pre-deployment tests
3. Compile and/or package the code
4. Build the container
5. Push the container to the registry
6. Deploy the container to the production server
7. Integrate the container
8. Run post-integration tests
9. Push the tests container to the registry

Implementation of the Deployment Pipeline: Initial Stages 65

Figure 5-1: The Docker deployment pipeline process

At the moment we’ll limit ourselves to manual execution and once we’re comfortable with the way
things work we’ll transfer our knowledge to one of the CI/CD tools.

Checking Out the Code

Checking out the code is easy, and we already did it a couple of times.

1 git clone https://github.com/vfarcic/books-ms.git

2

3 cd books-ms

Running Pre-Deployment Tests, Compiling, and Packaging the
Code

With the code checked out, we should run all the tests that do not require the service to be deployed.
We already did the procedure when we tried different things we could do in the development
environment.

Implementation of the Deployment Pipeline: Initial Stages 66

1 docker build \

2 -f Dockerfile.test \

3 -t 10.100.198.200:5000/books-ms-tests \

4 .

5

6 docker-compose \

7 -f docker-compose-dev.yml \

8 run --rm tests

9

10 ll target/scala-2.10/

First we built the tests container defined in the Dockerfile.test file and tagged it with the -t argument.
The name (or tag) of the container is 10.100.198.200:5000/books-ms-tests. That is the special syntax
with the first part being the address of the local registry and the second part the actual name of the
container. We’ll discuss and use the Registry later on. For now, it’s important to know that we use
it to store and retrieve containers we’re building.

The second command run all the pre-deployment tests and compiled the Scala code into a JAR file
ready for the distribution. The third command is only for demonstration purposes so that you can
confirm that the JAR file is indeed created and resides in the scala-2.10 directory.

Keep in mind that the reason for such a long time it took to build the container is because of a lot
of things had to be downloaded for the first time. Each consecutive build will be much faster.

All we did up to now was running different commands without trying to understand what is behind
them. Please note that commands to build Docker containers can be repeated in case of a failure.
For example, you might lose your internet connection and, in such a case, building container would
fail. If you repeat the build command, Docker will continue from the images that failed.

I wanted you to get a feeling of how Docker works from the perspective of those who just use pre-
made containers or Dockerfile definitions created by others. Let us change this rhythm and dive into
Dockerfile that is used to define containers.

Building Docker Containers

With all the tests passed and the JAR file created, we can build the container that we’ll deploy
to production later on. Before we do that, let us examine the Dockerfile⁴³ that contains all the
information Docker needs for building the container. Contents of the Dockerfile are as follows.

⁴³https://github.com/vfarcic/books-ms/blob/master/Dockerfile

https://github.com/vfarcic/books-ms/blob/master/Dockerfile
https://github.com/vfarcic/books-ms/blob/master/Dockerfile

Implementation of the Deployment Pipeline: Initial Stages 67

1 FROM debian:jessie

2 MAINTAINER Viktor Farcic "viktor@farcic.com"

3

4 RUN apt-get update && \

5 apt-get install -y --force-yes --no-install-recommends openjdk-7-jdk && \

6 apt-get clean && \

7 rm -rf /var/lib/apt/lists/*

8

9 ENV DB_DBNAME books

10 ENV DB_COLLECTION books

11

12 COPY run.sh /run.sh

13 RUN chmod +x /run.sh

14

15 COPY target/scala-2.10/books-ms-assembly-1.0.jar /bs.jar

16 COPY client/components /client/components

17

18 CMD ["/run.sh"]

19

20 EXPOSE 8080

You can find theDockerfile file together with the rest of the books-ms code in the vfarcic/books-ms⁴⁴
GitHub repository.

Let us go through it line by line.

1 FROM debian:jessie

The first line specifies which image should be used as the base of the container we’re building. In our
case, we are usingDebian (version Jessie). That means that we should have most of the functionality
we would get with Debian OS. However, that is not to say that the whole OS is downloaded when
we pull this container. Remember, Docker is using host kernel so when we specify that container
should use, for example, Debian as its base, we are only downloading image that has things specific
to the OS we specified, like, for instance, packaging mechanism (apt in the case of Debian). What are
the differences between various base images? Why did we choose the debian image to part from?

In most cases the best choice for a base image is one of the official Docker images⁴⁵. Since Docker
itself maintains those, they tend to be better controlled than those created by the community. The
choice of the exact image one should use depends on the needs. Debian⁴⁶ is my preference in many
cases. Besides my liking of Debian-based Linux distributions, it is relatively small (∼125 MB) and

⁴⁴https://github.com/vfarcic/books-ms.git
⁴⁵https://hub.docker.com/explore/
⁴⁶https://hub.docker.com/_/debian/

https://github.com/vfarcic/books-ms.git
https://hub.docker.com/explore/
https://hub.docker.com/_/debian/
https://github.com/vfarcic/books-ms.git
https://hub.docker.com/explore/
https://hub.docker.com/_/debian/

Implementation of the Deployment Pipeline: Initial Stages 68

still a full distribution with everything you might need from a Debian OS. On the other hand, you
might be familiar with RPM packaging and prefer, for example, CentOS⁴⁷. Its size is around 175
MB (approximately 50 % bigger than Debian). There are, however, some other cases when size is of
utmost importance. That is especially true for images that would serve as utilities that are run once
in a while to perform some specific actions. In such cases, Alpine⁴⁸ might be a good start. Its size is 5
MB making it minuscule. However, bear in mind that, due to its minimalistic approach, this image
might be hard to reason with when more complicated commands are run on top of it. Finally, in
many cases, you might want to use more specific images as a base of your containers. For example,
if you need a container with MongoDB but have few specific actions to perform on its initialization,
you should use the mongo⁴⁹ image.

In systems that host many containers, the size of the base image is less important than how many
different base images are used. Remember, each image is cached on the server and reused across all
containers that use it. If all your containers are, for example, extending from the debian image, the
same cached copy will be reused in all cases meaning that it will be downloaded only once.

What we use as a base image is a container like any other. That means that you can use your
containers as a base for others. For example, you might have many cases with applications that
require NodeJS in combination with Gulp and few scripts specific to your organization. This scenario
would be a good candidate for a container that would be extended (through the FROM instruction)
by others.

Let us move to the next instruction.

1 MAINTAINER Viktor Farcic "viktor@farcic.com"

The maintainer is purely informational providing information about the author; a person who
maintains the container. Not much to do here. Moving on.

1 RUN apt-get update && \

2 apt-get install -y --force-yes --no-install-recommends openjdk-7-jdk && \

3 apt-get clean && \

4 rm -rf /var/lib/apt/lists/*

The RUN instruction executes any set of commands that run in the same way as if those commands
are run in the command prompt. You might have noticed that each but the last line in our example
ends with && \. We are joining several separate commands instead of running each of them as a
separate RUN instruction. The same result (from the operational perspective) could be accomplished
with the following.

⁴⁷https://hub.docker.com/_/centos/
⁴⁸https://hub.docker.com/_/alpine/
⁴⁹https://hub.docker.com/_/mongo/

https://hub.docker.com/_/centos/
https://hub.docker.com/_/alpine/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/centos/
https://hub.docker.com/_/alpine/
https://hub.docker.com/_/mongo/

Implementation of the Deployment Pipeline: Initial Stages 69

1 RUN apt-get update

2 RUN apt-get install -y --force-yes --no-install-recommends openjdk-7-jdk

3 RUN apt-get clean

4 RUN rm -rf /var/lib/apt/lists/*

That certainly looks cleaner and easier to maintain. However, it has its set of problems. One of them
is that each instruction in the Dockerfile generates a separate image. A container is a collection of
images stacked one on top of the other. Knowing that, last two RUN instructions (clean and rm) do
not provide any value. Let’s illustrate it by putting (invented numbers) of the size of each image.
First two instructions (apt-get update and apt-get install) are adding packages (let’s say 100
MB). The second two (apt-get clean and rm) are removing files (let’s say 10 MB). While removal
of files on a “normal” system does reduce the size of what we have stored on the HD, in the case of
Docker containers it only removes things from the current image. Since each image is immutable,
previous two images continue to have the size of 100 MB thus not removing the overall size of the
container even though files removed later on are not accessible within the container. The size of
those four images continues being 100 MB. If we go back to the first example where all commands
are executed within the same RUN instruction thus creating a single image, the size is smaller (100
MB - 10 MB = 90 MB).

The important thing to note is that the size is not the only important consideration and we should
try to balance it with maintainability. Dockerfile needs to be readable, easy to maintain and with
a clear intention behind it. That means that in some cases the benefits of having one huge RUN
instruction might not be the best option if that means that it will be hard to maintain it later on.

All that being said, the purpose of the RUN command in our example is to update the system with
latest packages (apt-get update), install JDK 7 (apt-get install) and remove unnecessary files
created during the process (apt-get clean and rm).

The next set of instructions provides the container with environment variables that can be changed
at runtime.

1 ENV DB_DBNAME books

2 ENV DB_COLLECTION books

In this particular case, we are declaring variablesDB_DBNAME and DB_COLLECTION with default
values. The code of the service uses those variables to create the connection to theMongo DB. If, for
some reason, we’d like to change those values, we could set them when executing the docker run

command (as we’ll see later on throughout the book).

In the “container world”, we are discouraged from passing environment specific files to containers
running on different servers. Ideally, we should run a container without any other external files.
While that is in some cases impractical (as, for example, with nginx that we’ll use later on for reverse
proxy), environment variables are a preferred way of passing environment specific information to
the container at runtime.

Next, in our example, are a couple of COPY instructions.

Implementation of the Deployment Pipeline: Initial Stages 70

1 COPY run.sh /run.sh

2 RUN chmod +x /run.sh

3

4 COPY target/scala-2.10/books-ms-assembly-1.0.jar /bs.jar

5 COPY client/components /client/components

COPY instruction is true to its name. It copies files from the host file system to the container we are
building. It should bewritten in the COPY <source>... <destination> format. The source is relative
to the location of theDockerfile and must be inside the context of the build. What the later statement
means is that you cannot copy files that are not inside the directory where Dockerfile resides or one
of its child directories. For example, COPY ../something /something is not allowed. The source can
be a file or a whole directory and can accept wildcards matching the Go’s filepath.Match⁵⁰ rules.
The destination can also be a file or a directory. Destination matches the type of the source. If the
source is a file, destination will be a file as well. Same is true when the source is a directory. To force
destination to be a directory, end it with a slash (/).

While we haven’t used ADD in our example, it is worth noting that it is very similar to COPY. In
most cases I encourage you to use COPY unless you need additional features that ADD provides
(most notably TAR extraction and URL support).

In our example, we are copying run.sh and making it executable through the chmod RUN instruction.
Next, we are copying the rest of the files (back-end JAR and front-end components).

Let us go through the last two instructions from our Dockerfile.

1 CMD ["/run.sh"]

2 EXPOSE 8080

CMD specifies the command that will be executed when the container starts. The format is
[“executable”, “parameter1”, “parameter2”…]. In our case /run.sh will run without any parameters.
At the moment, the script contains a single command java -jar bs.jar that will start the
Scala/Spray server. Keep in mind that CMD provides only the default executor that can be easily
overwritten when a container is run.

The EXPOSE instruction specifies which port inside the container will be available at runtime.

The exampleDockerfilewe explained does not contain all the instructions we could use. Throughout
this book, we’ll work with a couple of others and get more familiar with the format. In the meantime,
please visit the Dockerfile reference⁵¹ for more information.

Equipped with this knowledge, let us build the container. The command is as follows.

⁵⁰http://golang.org/pkg/path/filepath/#Match
⁵¹https://docs.docker.com/reference/builder/

http://golang.org/pkg/path/filepath/#Match
https://docs.docker.com/reference/builder/
http://golang.org/pkg/path/filepath/#Match
https://docs.docker.com/reference/builder/

Implementation of the Deployment Pipeline: Initial Stages 71

1 docker build -t 10.100.198.200:5000/books-ms .

Let us use the time it takes for this command run (the first build always takes longer than the others)
and go through the arguments we used. The first argument is build used for building containers.
Argument -t allows us to tag the container with a particular name. If you’d like to push this
container to the public Hub, the tag would be using the <username>/<container_name> format.
If you have the account on Docker Hub⁵², the username is used to identify you and can be used later
on to push the container making it available for pulling on any server connected to the internet.
Since I’m not willing to share my password, we took a different approach and used the registry
IP and port instead of the Docker Hub username. That allows us to push it to the private registry
instead. This alternative is usually better because it provides us with a complete control over our
containers, tends to be faster over the local network and won’t give CEO of your company a heart
attack for sending your applications to the cloud. Finally, the last argument is a dot (.) specifying
that the Dockerfile is located in the current directory.

One important thing left to discuss is the order of instructions in the Dockerfile. On one hand, it
needs to be in logical. We can not, for example, run an executable before installing it or, as in our
example, change permissions of the run.sh file before we copy it. On the other hand, we need to
take in account Docker caching. When a docker build command is run, Docker will go instruction
by instruction and check whether some other build process already created the image. Once an
instruction that will build a new image is found, Docker will build not only that instruction but of
all those that follow. That means that, in most cases, COPY and ADD instructions should be placed
near the bottom of the Dockerfile. Even within a group of COPY and ADD instructions, we should
make sure to place higher those files that are less likely to change. In our example, we’re adding
run.sh before the JAR file and front-end components since later are likely to change with every
build. If you execute the docker build command the second time you’ll notice that Docker outputs
---> Using cache in all steps. Later on, when we change the source code, Docker will continue
outputting ---> Using cache only until it gets to one of the last two COPY instructions (which one
it will be, depends on whether we changed the JAR file or the front-end components).

We’ll be using Docker commands a lot, and you’ll have plenty opportunity to get more familiar with
them. In the meantime, please visit the Using the command line⁵³ page for more information.

Hopefully, by this time, the container is already built. If not, take a short break. We are about to run
our newly built container.

Running Containers

Running containers is easy as long as you know which arguments to use. The container we just built
can be run with the following commands.

⁵²https://hub.docker.com/
⁵³https://docs.docker.com/reference/commandline/cli/

https://hub.docker.com/
https://docs.docker.com/reference/commandline/cli/
https://hub.docker.com/
https://docs.docker.com/reference/commandline/cli/

Implementation of the Deployment Pipeline: Initial Stages 72

1 docker run -d --name books-db mongo

2

3 docker run -d --name books-ms \

4 -p 8080:8080 \

5 --link books-db:db \

6 10.100.198.200:5000/books-ms

The first command started the database container required by our service. The argument -d allows
us to run a container in detached mode, meaning that it will run in the background. The second one,
--name books-db, gives the container a name. If not specified, Docker would assign a random one.
Finally, the last argument is the name of the image we want to use. In our case, we’re usingmongo,
the official Docker MongoDB image.

This command shows one of very useful Docker features. Just as GitHub revolutionized the way
we share code between different developers and projects, Docker Hub changed the way we deploy
not only applications we are building but also those built by others. Please feel free to visit Docker
Hub⁵⁴ and search for your favorite application, service, or a database. Chances are you’ll find not
only one (often official docker container) but many others done by the community. Efficient usage
of Docker is often a combination of running images built by yourself and those built by others.
Even if no image serves your purpose, it is often a good idea to use existing one as a base image.
For example, you might want MongoDB with replication set enabled. The best way to obtain such
an image would be to use mongo as the FROM instruction in your Dockerfile and add replication
commands below it.

The second docker run is a little bit more complicated. Besides running in detached mode and
giving it a name, it also exposes port 8080 and links with the books-ms-db container. Exposing port
is easy. We can provide a single port, for example -p 8080. In such a case, Docker will expose its
internal port 8080 as a random port. We’ll use this approach later on when we start working with
service discovery tools. In this example, we used two ports separated by a colon (-p 8080:8080).
With such argument, Docker exposed its internal port 8080 to 8080. The next argument we used
is --link books-ms-db:db and allows us to link two containers. In this example, the name of the
container we want to link to is books-ms-db. Inside the container, this link will be converted into
environment variables. Let see how those variables look like.

We can enter the running container using the exec command.

1 docker exec -it books-ms bash

2

3 env | grep DB

4

5 exit

⁵⁴https://hub.docker.com/

https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Implementation of the Deployment Pipeline: Initial Stages 73

Arguments -it tells Docker that we want this execution to be interactive and with a terminal. It is
followed by the name of the running container. Finally, we are overwriting the default command
specified as the CMD instruction in the Dockerfile with bash. In other words, we entered into the
running container by running bash. Once inside the container, we listed all environment variables
and filtered them so that only those containing DB are output. When we run the container, we
specified that it should link with books-ms-db as db. Since all environment variables are always in
uppercase, Docker created quite a few of them with names starting with DB. The output of env was
as follows.

1 DB_NAME=/books-ms/db

2 DB_PORT_27017_TCP=tcp://172.17.0.5:27017

3 DB_PORT=tcp://172.17.0.5:27017

4 DB_ENV_MONGO_VERSION=3.0.5

5 DB_PORT_27017_TCP_PORT=27017

6 DB_ENV_MONGO_MAJOR=3.0

7 DB_PORT_27017_TCP_PROTO=tcp

8 DB_PORT_27017_TCP_ADDR=172.17.0.5

9 DB_COLLECTION=books

10 DB_DBNAME=books

All but the last two are a result of linking with the other container. We got the name of the link, TCP,
port, and so on. The last two (DB_COLLECTION and DB_DBNAME) are not the result of linking
but variables we defined inside the Dockerfile.

Finally, we exited the container.

There are few more things we can do to ensure that everything is running correctly.

1 docker ps -a

2

3 docker logs books-ms

The ps -a command listed all (-a) containers. This command should output both books-ms and
books-ms-db. The logs command, as the name says, outputs logs of the container books-ms.

Even though it was very easy to run theMongo DB and our container, books-ms, we are still required
to remember all the arguments. Much easier way to accomplish the same result is with Docker
Compose⁵⁵. Before we see it in action, let us remove the container we are running.

⁵⁵https://docs.docker.com/compose/

https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/

Implementation of the Deployment Pipeline: Initial Stages 74

1 docker rm -f books-ms books-db

2

3 docker ps -a

The first command (rm) removes all listed containers. The argument -f forces that removal. Without
it, only stopped containers could be removed. The rm command combined with the -f argument is
equivalent to stopping containers with the stop command and then removing them with rm.

Let us run the same two containers (mongo and books-ms) with Docker Compose.

1 docker-compose -f docker-compose-dev.yml up -d app

The output of the command is as follows.

1 Creating booksms_db_1

2 Creating booksms_app_1

This time, we run both containers with a single docker-compose command. The -f argument
specifies the specification file we want to use. I tend to define all development configurations in
docker-compose-dev.yml and production in the default docker-compose.yml. When default file name
is used, there is no need for the -f argument. Next is the up command that brought up the app

container in detached mode (-d).

Let’s take a look at the contents of the docker-compose-dev.yml⁵⁶ file.

1 app:

2 image: 10.100.198.200:5000/books-ms

3 ports:

4 - 8080:8080

5 links:

6 - db:db

7

8 db:

9 image: mongo

10 ...

The above output only displays the targets we are interested right now. There are others primarily
dedicated to testing and compiling. We used them before when we set up the development
environment. We’ll use them again later on. For now, let us discuss the app and db targets. Their
definition is very similar to Docker commands and arguments we already used and should be easy
to understand. The interesting one is links. Unlike linking with manual commands where we need

⁵⁶https://github.com/vfarcic/books-ms/blob/master/docker-compose-dev.yml

https://github.com/vfarcic/books-ms/blob/master/docker-compose-dev.yml
https://github.com/vfarcic/books-ms/blob/master/docker-compose-dev.yml

Implementation of the Deployment Pipeline: Initial Stages 75

first to start the source container (in our case mongo) and then the one that links to it (books-ms),
docker-compose will start all dependant containers automatically. We run the app target and Docker
compose realized that it depends on the db target, so it started it first.

As before, we can verify that both containers are up and running. This time, we’ll do it with the
Docker Compose.

1 docker-compose ps

The output should be similar to the following.

1 Name Command State Ports

2 --

3 booksms_app_1 /run.sh Up 0.0.0.0:8080->8080/tcp

4 booksms_db_1 /entrypoint.sh mongod Up 27017/tcp

Docker Compose, by default, names running containers using the combination of the project name
(which default to the name of the directory), the name of the target (app) and the instance number
(1). Later on, we’ll run multiple instances of the same container distributed across multiple servers,
and you’ll have the chance to see this number increase.

With both containers up and running, we can check the logs of the containers we run with Docker
Compose.

1 docker-compose logs

Please note that Docker Compose logs are in the follow mode, and you need to press CTRL+c to stop
it.

I prefer as much testing as possible to be automatic, but that subject is left for later chapters so a
brief manual verification will have to do for now.

1 curl -H 'Content-Type: application/json' -X PUT -d \

2 '{"_id": 1,

3 "title": "My First Book",

4 "author": "John Doe",

5 "description": "Not a very good book"}' \

6 http://localhost:8080/api/v1/books | jq '.'

7

8 curl -H 'Content-Type: application/json' -X PUT -d \

9 '{"_id": 2,

10 "title": "My Second Book",

11 "author": "John Doe",

Implementation of the Deployment Pipeline: Initial Stages 76

12 "description": "Not a bad as the first book"}' \

13 http://localhost:8080/api/v1/books | jq '.'

14

15 curl -H 'Content-Type: application/json' -X PUT -d \

16 '{"_id": 3,

17 "title": "My Third Book",

18 "author": "John Doe",

19 "description": "Failed writers club"}' \

20 http://localhost:8080/api/v1/books | jq '.'

21

22 curl http://localhost:8080/api/v1/books | jq '.'

23

24 curl http://localhost:8080/api/v1/books/_id/1 | jq '.'

For those unfamiliar with cURL, it is a command line tool and library for transferring data with URL
syntax. In our case, we’re using it to send three PUT requests to the service that, in turn, stored data
to the MongoDB. Last two commands invoked the service APIs to retrieve a list of all books, as well
as data related to a particular book with the ID 1. With those manual verifications, we confirmed
that the service works and can communicate with the database. Please note that we used jq to format
JSON output.

Remember, this service also contains front-end Web components, but we won’t try them out at this
time. That is reserved for later, when we deploy this service to production together with the Web
site that will import them.

Containers that we are running are misplaced. The VM that we’re using is supposed to be dedicated
to continuous deployment, and the containers that we built should run on a separate production
server (or in our case a separate VM that should simulate such a server). Before we start deploying
to production, we should go through configuration management that will allow us not only to
streamline the deployment but also to setup the servers. We already used Ansible to create the
cd VM, but we haven’t had time to explain how it works. Even worst, we are yet to make a choice
which tool to use.

For now, let us stop and remove the books-ms container and its dependencies thus freeing the cd
server to do what it was intended to do in the first place; enable continuous deployment pipeline.

1 docker-compose stop

2

3 docker-compose rm -f

Pushing Containers to the Registry

Docker Registry can be used to store and retrieve containers. We already run it with the cd VM we
created at the beginning of this chapter. With the books-ms built, we can push it to the registry.

Implementation of the Deployment Pipeline: Initial Stages 77

That will allow us to pull the container from any place that can access the cd server. Please run the
following command.

1 docker push 10.100.198.200:5000/books-ms

Earlier in this chapter, we built the container using the 10.100.198.200:5000/books-ms tag. That was
a special format used for pushing to private registries; <registry_ip>:<registry_port>/<container_-
name>. After the container has been tagged, we pushed it to the registry running on IP 10.100.198.200
and port 5000. 10.100.198.200 is the IP of our cd VM.

With the container safely stored to the registry, we can run it on any server. Soon, once we go
through configuration management, we’ll have additional servers where we’ll run containers stored
in this registry.

Let’s finish this chapter by destroying all the VMs. The next chapter will create those we need. That
way you can take a break before continuing our adventure or jump into any chapter without the
fear that something will fail due to tasks we did before. Each chapter is fully autonomous. While you
will benefit from the knowledge obtained from previous chapters, technically, each of them works
on its own. Before we destroy everything we did, we’ll push the tests container so that we do not
have to re-built it again from scratch. Registry container has a volume that maps our host directory
to the internal path where images are stored. That way, all pushed images are stored on the host
(directory registry) and do not depend on the VM where it’s running.

1 docker push 10.100.198.200:5000/books-ms-tests

2

3 exit

4

5 vagrant destroy -f

The Checklist

We are still a few steps short of the basic implementation of the deployment pipeline. As a reminder,
the steps are following.

1. Checkout the code - Done
2. Run pre-deployment tests - Done
3. Compile and/or package the code - Done
4. Build the container - Done
5. Push the container to the registry - Done
6. Deploy the container to the production server - Pending
7. Integrate the container - Pending

Implementation of the Deployment Pipeline: Initial Stages 78

8. Run post-deployment tests - Pending
9. Push the tests container to the registry - Pending

It is important to notice that all the steps we run by now were performed on the cd VM. We want
to reduce the impact on the production environment as much as possible so we’ll continue running
steps (or part of them) outside the destination server as much as possible.

Figure 5-2: The initial stages of the deployment pipeline with Docker

We did the first five steps, or, at least, their manual version. The rest will have to wait until we set
up our production server. In the next chapter, we’ll discuss the options we have to accomplish this
task.

Configuration Management in the
Docker World
Anyonemanaging more than a few servers can confirm that doing such a task manually is a waste of
time and risky. Configuration management (CM) exists for a long time, and there is no single reason
I can think of why one would not use one of the tools. The question is not whether to adopt one of
them but which one to choose. Those that already embraced one or the other and invested a lot of
time and money will probably argue that the best tool is the one they chose. As things usually go, the
choices change over time and the reasons for one over the other might not be the same today as they
were yesterday. In most cases, decisions are not based on available options but by the architecture
of the legacy system, we are sworn to maintain. If such systems are to be ignored, or someone with
enough courage and deep pockets would be willing to modernize them, today’s reality would be
dominated by containers and microservices. In such a situation, the choices we made yesterday are
different from choices we could make today.

CFEngine

CFEngine⁵⁷ can be considered the father of configuration management. It was created in 1993 and
revolutionized the way we approach server setups and configurations. It started as an open source
project and become commercialized in 2008 when the first enterprise version was released.

CFEngine is written in C, has only a few dependencies and is lightning fast. Actually, as to my
knowledge, no other tool managed to overcome CFEngine’s speed. That was, and still is its main
strength. However, it had its weaknesses, with the requirement for coding skills being probably
the main one. In many cases, an average operator was not able to utilize CFEngine. It requires a
C developer to manage it. That did not prevent it from becoming widely adopted in some of the
biggest enterprises. However, as youth usually wins over age, new tools were created, and today
rarely anyone chooses CFEngine without being “forced” to do so due to the investment the company
made into it.

Puppet

Later on, Puppet⁵⁸ came into being. It also started as an open source project followed by the enterprise
version. It was considered more “operations friendly” thanks to its model-driven approach and small

⁵⁷http://cfengine.com/
⁵⁸https://puppetlabs.com/

79

http://cfengine.com/
https://puppetlabs.com/
http://cfengine.com/
https://puppetlabs.com/

Configuration Management in the Docker World 80

learning curve when compared to CFEngine. Finally, there was a configuration management tool
that operations department could leverage. Unlike C utilized by CFEngine, Ruby proved to be easier
to reason with and more accepted by ops. CFEngine’s learning curve was probably the main reason
Puppet got its footing into the configuration management market and slowly sent CFEngine into
history. That does not mean that CFEngine is not used any more. It is, and it doesn’t seem it will
disappear anytime soon in the same way as Cobol is still present in many banks and other finance
related businesses. However, it lost its reputation for being the weapon of choice.

Chef

Then came Chef⁵⁹ promising to solve some of the nuances of Puppet. And it did, for a while. Later,
as the popularity of both Puppet and Chef continued increasing, they entered the “zero sum game”.
As soon as one of them came up with something new or some improvement, the other one adopted
it. Both feature an ever increasing number of tools that tend to increase their learning curves and
complexity. Chef is a bit more “developer friendly” while Puppet could be considered more oriented
towards operations and sysadmin type of tasks. Neither has a clear enough advantage over the other,
and the choice is often based on personal experience than anything else. Both Puppet and Chef are
mature, widely adopted (especially in enterprise environments) and have an enormous number of
open source contributions. The only problem is that they are too complicated for what we are trying
to accomplish. Neither of them was designed with containers in mind. Neither of them could know
that the “game” would change with Docker since it didn’t exist at the time they were designed.

All of the configuration management tools we mentioned thus far are trying to solve problems that
we should not have the moment we adopt containers and immutable deployments. The server mess
that we had before is no more. Instead of hundreds or even thousands of packages, configuration
files, users, logs, and so on, we are now trying to deal with a lot of containers and very limited
amount of anything else. That does not mean that we do not need configuration management. We
do! However, the scope of what the tool of choice should do is much smaller. In most cases, we need
a user or two, Docker service up and running and a few more things. All the rest are containers.
Deployment is becoming a subject of a different set of tools and redefining the scope of what CM
should do. Docker Compose, Mesos, Kubernetes, and Docker Swarm, are only a few of a rapidly
increasing number of deployment tools we might use today. In such a setting, our configuration
management choice should value simplicity and immutability over other things. Syntax should be
simple and easy to read even to those who never used the tool. Immutability can be accomplished
by enforcing a push model that does not require anything to be installed on the destination server.

Ansible

Ansible⁶⁰ tries to solve the same problems as other configuration management tools but in a very
different way. One significant difference is that it performs all its operations over SSH. CFEngine

⁵⁹https://www.chef.io/
⁶⁰http://www.ansible.com/

https://www.chef.io/
http://www.ansible.com/
https://www.chef.io/
http://www.ansible.com/

Configuration Management in the Docker World 81

and Puppet require clients to be installed on all servers they are supposed to manage. While Chef
claims that it doesn’t, its support for agent-less running has limited features. That in itself is a huge
difference when compared to Ansible that does not require servers to have anything special since
SSH is (almost) always present. It leverages well defined and widely used protocol to run whatever
commands need to be run to make sure that the destination servers comply with our specifications.
The only requirement is Python that is already pre-installed on most Linux distributions. In other
words, unlike competitors that are trying to force you to setup servers in a certain way, Ansible
leverages existing realities and does not require anything. Due to its architecture, all you need is
a single instance running on a Linux or OS X computer. We can, for example, manage all our
servers from a laptop. While that is not advisable and Ansible should probably run on a “real” server
(preferably the same one where other continuous integration and deployment tools are installed),
laptop example illustrates its simplicity. In my experience, push-based systems like Ansible are much
easier to reason with than pull based tools we discussed earlier.

Learning Ansible takes a fraction of the time when compared to all the intricacies required to master
the other tools. Its syntax is based on YAML (Yet Another Markup Language) and with a single
glimpse over a playbook, even a person who never used the tool would understand what’s going on.
Unlike Chef, Puppet and, especially CFEngine that are written by developers for developers, Ansible
is written by developers for people who have better things to do than learn yet another language
and/or DSL.

Some would point out that the major downside is Ansible’s limited support for Windows. The
client does not even run on Windows, and the number of modules that can be used in playbooks
and run on it is very limited. This downside, assuming that we are using containers is, in my
opinion, an advantage. Ansible developers did not waste time trying to create an all around tool
and concentrated on what works best (commands over SSH on Linux). In any case, Docker is not
yet ready to run containers in Windows. It might be in the future but at this moment (or, at least,
the moment I was writing this text), this is on the roadmap. Even if we ignore containers and their
questionable future on Windows, other tools are also performing much worse on Windows than
Linux. Simply put, Windows architecture is not as friendly to the CM objectives than Linux is.

I probably went too far and should not be too harsh on Windows and question your choices. If you
do prefer Windows servers over some Linux distribution, all my praise of Ansible is in vain. You
should choose Chef or Puppet and, unless you already use it, ignore CFEngine.

Final Thoughts

If someone asked me few years ago which tool should we use I would have a hard time answering.
Today, if one has the option to switch to containers (be it Docker or some other type) and immutable
deployments, the choice is clear (at least among tools I mentioned). Ansible (when combined with
Docker and Docker deployment tools) wins any time of the day. We might even argue whether CM
tools are needed at all. There are examples when people fully rely upon, let’s say, CoreOS, containers,
and deployment tools like Docker Swarm or Kubernetes. I do not have such a radical opinion (yet)
and think that CM continues being a valuable tool in the arsenal. Due to the scope of the tasks CM

Configuration Management in the Docker World 82

tools needs to perform, Ansible is just the tool we need. Anything more complicated or harder to
learn would be overkill. I am yet to find a person who had trouble maintaining Ansible playbooks.
As a result, configuration management can quickly become the responsibility of the whole team.
I’m not trying to say that infrastructure should be taken lightly (it definitely shouldn’t). However,
having contributions from the entire team working on a project is a significant advantage for any
type of tasks and CM should not be an exception. CFEngine, Chef, and Puppet are an overkill with
their complex architecture and their steep learning curve, at least, when compared with Ansible.

The four tools we briefly went through are by no means the only ones we can choose from. You
might easily argue that neither of those is the best and vote for something else. Fair enough. It all
depends on preferences and objectives we are trying to archive. However, unlike the others, Ansible
can hardly be a waste of time. It is so easy to learn that, even if you choose not to adopt it, you won’t
be able to say that a lot of valuable time was wasted. Besides, everything we learn brings something
new and makes us better professionals.

You probably guessed by now that Ansible will be the tool we’ll use for configuration management.

Configuring the Production Environment

Let us see Ansible⁶¹ in action and then discuss how it is configured. We’ll need two VMs up and
running; the cd will be used as a server from which we’ll set up the prod node.

1 vagrant up cd prod --provision

2

3 vagrant ssh cd

4

5 ansible-playbook /vagrant/ansible/prod.yml -i /vagrant/ansible/hosts/prod

The output should be similar to the following.

1 PPLAY [prod] ***

2

3 GATHERING FACTS ***

4 The authenticity of host '10.100.198.201 (10.100.198.201)' can't be established.

5 ECDSA key fingerprint is 2c:05:06:9f:a1:53:2a:82:2a:ff:93:24:d0:94:f8:82.

6 Are you sure you want to continue connecting (yes/no)? yes

7 ok: [10.100.198.201]

8

9 TASK: [common | JQ is present] **

10 changed: [10.100.198.201]

11

⁶¹http://www.ansible.com/home

http://www.ansible.com/home
http://www.ansible.com/home

Configuration Management in the Docker World 83

12 TASK: [docker | Debian add Docker repository and update apt cache] ************

13 changed: [10.100.198.201]

14

15 TASK: [docker | Debian Docker is present] *************************************

16 changed: [10.100.198.201]

17

18 TASK: [docker | Debian python-pip is present] *********************************

19 changed: [10.100.198.201]

20

21 TASK: [docker | Debian docker-py is present] **********************************

22 changed: [10.100.198.201]

23

24 TASK: [docker | Debian files are present] *************************************

25 changed: [10.100.198.201]

26

27 TASK: [docker | Debian Daemon is reloaded] ************************************

28 skipping: [10.100.198.201]

29

30 TASK: [docker | vagrant user is added to the docker group] ********************

31 changed: [10.100.198.201]

32

33 TASK: [docker | Debian Docker service is restarted] ***************************

34 changed: [10.100.198.201]

35

36 TASK: [docker-compose | Executable is present] ********************************

37 changed: [10.100.198.201]

38

39 PLAY RECAP **

40 10.100.198.201 : ok=11 changed=9 unreachable=0 failed=0

The important thing about Ansible (and configuration management in general) is that we are in
most cases specifying the desired state of something instead commands we want to run. Ansible, in
turn, will do its best to make sure that the servers are in that state. From the output above we can see
that statuses of all tasks are changed or skipping. For example, we specified that we want Docker
service. Ansible noticed that we do not have it on the destination server (prod) and installed it.

What happens if we run the playbook again?

1 ansible-playbook prod.yml -i hosts/prod

You’ll notice that the status of all the tasks is ok.

Configuration Management in the Docker World 84

1 PLAY [prod] ***

2

3 GATHERING FACTS ***

4 ok: [10.100.198.201]

5

6 TASK: [common | JQ is present] **

7 ok: [10.100.198.201]

8

9 TASK: [docker | Debian add Docker repository and update apt cache] ************

10 ok: [10.100.198.201]

11

12 TASK: [docker | Debian Docker is present] *************************************

13 ok: [10.100.198.201]

14

15 TASK: [docker | Debian python-pip is present] *********************************

16 ok: [10.100.198.201]

17

18 TASK: [docker | Debian docker-py is present] **********************************

19 ok: [10.100.198.201]

20

21 TASK: [docker | Debian files are present] *************************************

22 ok: [10.100.198.201]

23

24 TASK: [docker | Debian Daemon is reloaded] ************************************

25 skipping: [10.100.198.201]

26

27 TASK: [docker | vagrant user is added to the docker group] ********************

28 ok: [10.100.198.201]

29

30 TASK: [docker | Debian Docker service is restarted] ***************************

31 skipping: [10.100.198.201]

32

33 TASK: [docker-compose | Executable is present] ********************************

34 ok: [10.100.198.201]

35

36 PLAY RECAP **

37 10.100.198.201 : ok=10 changed=0 unreachable=0 failed=0

Ansible went to the server and checked the status of all tasks, one at the time. Since this is the second
run and we haven’t modified anything in the server, Ansible concluded that there is nothing to do.
The current state is as expected.

The command we just run (ansible-playbook prod.yml -i hosts/prod) is simple. The first

Configuration Management in the Docker World 85

argument is the path to the playbook and the second argument’s value represents the path to the
inventory file that contains the list of servers where this playbook should run.

That was a very simple example. We had to setup the production environment and, at this moment,
all we needed is Docker, Docker Compose, and a few configuration files. Later on, we’ll see more
complicated examples.

Now that we’ve seen Ansible in action let us go through the configuration of the playbook we just
run (twice).

Setting Up the Ansible Playbook

The content of the prod.yml⁶² Ansible playbook is as follows.

1 - hosts: prod

2 remote_user: vagrant

3 serial: 1

4 sudo: yes

5 roles:

6 - common

7 - docker

Just by reading the playbook one should be able to understand what’s it about. It is running on hosts
called prod as the user vagrant and executes commands as sudo. At the bottom is the list of roles
that, in our case, consists of only two; common and docker. Role is a set of tasks that we usually
organize around one functionality, product, type of operations, and so on. The Ansible playbook
organization is based on tasks that are grouped into roles that can be combined into playbooks.

Before we take a look at it, let us discuss what are the objectives of the docker role. We want to
make sure that the Docker Debian repository is present and that the latest docker-engine package is
installed. Later on, we’ll need the docker-py⁶³ (Python API client for Docker) that can be installed
with pip⁶⁴ so we’re making sure that both are present in our system. Next, we need the standard
Docker configuration to be replaced with our file located in the files directory. Docker configurations
require Docker service to be restarted, so we have to do just that every time there is a change to the
files/docker file. Finally, we’re making sure that the user vagrant is added to the group docker and,
therefore, able to run Docker commands.

Let us take a look at the roles/docker directory that defines the role we’re using. It consists of two
sub-directories, files, and tasks. Tasks are the heart of any role and, by default, requires them to be
defined in the main.yml file.

The content of the roles/docker/tasks/main.yml⁶⁵ file is as follows.

⁶²https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod.yml
⁶³https://github.com/docker/docker-py
⁶⁴https://pypi.python.org/pypi/pip
⁶⁵https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/docker/tasks/main.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod.yml
https://github.com/docker/docker-py
https://pypi.python.org/pypi/pip
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/docker/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod.yml
https://github.com/docker/docker-py
https://pypi.python.org/pypi/pip
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/docker/tasks/main.yml

Configuration Management in the Docker World 86

1 - include: debian.yml

2 when: ansible_distribution == 'Debian' or ansible_distribution == 'Ubuntu'

3

4 - include: centos.yml

5 when: ansible_distribution == 'CentOS' or ansible_distribution == 'Red Hat Ent\

6 erprise Linux'

Since we’ll be running Docker on both Debian (Ubuntu) and CentOS or Red Hat, roles are split
into debian.yml and centos.yml files. Right now, we’ll be using Ubuntu so let’s take a look at the
roles/docker/tasks/debian.yml⁶⁶ role.

1 - name: Debian add Docker repository and update apt cache

2 apt_repository:

3 repo: deb https://apt.dockerproject.org/repo ubuntu-{{ debian_version }} main

4 update_cache: yes

5 state: present

6 tags: [docker]

7

8 - name: Debian Docker is present

9 apt:

10 name: docker-engine

11 state: latest

12 force: yes

13 tags: [docker]

14

15 - name: Debian python-pip is present

16 apt: name=python-pip state=present

17 tags: [docker]

18

19 - name: Debian docker-py is present

20 pip: name=docker-py version=0.4.0 state=present

21 tags: [docker]

22

23 - name: Debian files are present

24 template:

25 src: "{{ docker_cfg }}"

26 dest: "{{ docker_cfg_dest }}"

27 register: copy_result

28 tags: [docker]

29

30 - name: Debian Daemon is reloaded

⁶⁶https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/docker/tasks/debian.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/docker/tasks/debian.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/docker/tasks/debian.yml

Configuration Management in the Docker World 87

31 command: systemctl daemon-reload

32 when: copy_result|changed and is_systemd is defined

33 tags: [docker]

34

35 - name: vagrant user is added to the docker group

36 user:

37 name: vagrant

38 group: docker

39 register: user_result

40 tags: [docker]

41

42 - name: Debian Docker service is restarted

43 service:

44 name: docker

45 state: restarted

46 when: copy_result|changed or user_result|changed

47 tags: [docker]

If this would be a different framework or a tool, I would pass through each of the tasks and explain
them one by one, and you would be very grateful for acquiring more pieces of wisdom. However, I
do not think there is a reason to do that. Ansible is very straightforward. Assuming that you have a
basic Linux knowledge, I bet you can understand each of the tasks without any further explanation.
In case I was wrong, and you do need an explanation, please look for the module in question in
the All Modules⁶⁷ section of the Ansible documentation. For example, if you’d like to know what
the second task does, you’d open the apt module⁶⁸. The only important thing to know for now is
how the indentation works. YAML is based on key: value, parent/child structure. For example, the
last task has name and state keys that are children of the service that, in turn, is one of the Ansible
modules.

There is one more thing we used with our prod.yml playbook. The command we executed had the -i
hosts/prod argument that we used to specify the inventory file with the list of hosts the playbook
should run on. The hosts/prod⁶⁹ inventory is quite big since it is used throughout the whole book. At
the moment, we are interested only in the prod section since that is the value of the hosts argument
we specified in the playbook.

1 ...

2 [prod]

3 10.100.198.201

4 ...

⁶⁷http://docs.ansible.com/ansible/list_of_all_modules.html
⁶⁸http://docs.ansible.com/ansible/apt_module.html
⁶⁹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/prod

http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/apt_module.html
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/prod
http://docs.ansible.com/ansible/list_of_all_modules.html
http://docs.ansible.com/ansible/apt_module.html
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/prod

Configuration Management in the Docker World 88

If we’d like to apply the same configuration to more than one server all we’d have to do is add
another IP.

We’ll see more complex examples later on. I intentionally said more complex since nothing is truly
complicated in Ansible but, depending on some tasks and their interdependency, some roles can be
more or less complex. I hope that the playbook we just run gave you an approximation of the type
of the tool Ansible is and I hope you liked it. We’ll rely on it for all the configuration management
tasks and more.

You might have noticed that we never entered the prod environment but run everything remotely
from the cd server. The same practice will continue throughout the book. With Ansible and few
other tools we’ll get introduced to, later on, there is no need to ssh into servers and do manual tasks.
In my opinion, our knowledge and creativity should be used for coding and everything else should
be automatic; testing, building, deployment, scaling, logging, monitoring, and so on. That is one of
the takeaways of this book. The key to success is massive automation that frees us to do exciting
and more productive tasks.

As before, we’ll end this chapter by destroying all the VMs. The next chapter will create those we
need.

1 exit

2

3 vagrant destroy -f

With the first production server up and running (at the moment only with Ubuntu OS, Docker, and
Docker Compose) we can continue working on the basic implementation of the deployment pipeline.

Implementation of the Deployment
Pipeline: Intermediate Stages
We could not complete the basic implementation of the deployment pipeline without the production
server being set up. We didn’t need much. At the moment, Docker is our only prerequisite for the
deployment and that gave us a good excuse to make a side trip into the world of configuration
management. Now, with the Ansible playbook that will set up our prod server, we can continue
where we left and deploy the container to the production server.

1. Checkout the code - Done
2. Run pre-deployment tests - Done
3. Compile and/or package the code - Done
4. Build the container - Done
5. Push the container to the registry - Done
6. Deploy the container to the production server - Pending
7. Integrate the container - Pending
8. Run post-deployment tests - Pending
9. Push the tests container to the registry - Pending

89

Implementation of the Deployment Pipeline: Intermediate Stages 90

Figure 7-1: The initial stages of the deployment pipeline with Docker

We are missing only four steps from the manual deployment pipeline.

Deploying Containers to the Production Server

Let’s create and configure VMs we’ll use throughout this chapter.

1 vagrant up cd prod

2

3 vagrant ssh cd

4

5 ansible-playbook /vagrant/ansible/prod.yml \

6 -i /vagrant/ansible/hosts/prod

The first command brought up the cd and prod VMs while the second got us inside the cd VM.
Finally, the last command configured the prod VM.

Now that the production server is properly configured, we can deploy the books-ms container. Even
though we don’t have is pulled to the destination server, we already pushed it to the Docker registry
in the cd node (that maps into the host directory) and can retrieve it from there. What we do not

Implementation of the Deployment Pipeline: Intermediate Stages 91

have, however, is the Docker Compose configuration that specifies how the container should be run.
I prefer keeping everything related to a service in the same repository and *docker-compose.yml is
no exception. We can retrieve it GitHub.

1 wget https://raw.githubusercontent.com/vfarcic\

2 /books-ms/master/docker-compose.yml

With the docker-compose.yml⁷⁰ downloaded, let us take a quick look at it (targets that won’t be used
in this chapter have been excluded).

1 base:

2 image: 10.100.198.200:5000/books-ms

3 ports:

4 - 8080

5 environment:

6 - SERVICE_NAME=books-ms

7

8 app:

9 extends:

10 service: base

11 links:

12 - db:db

13

14 db:

15 image: mongo

The base target contains the base definition of our container. The next target (app) is extending the
base service allowing us to avoid duplicating the definitions. By extending services, we can override
arguments or add new ones. The app target will run the container we stored in the registry on the
cd server and is linked to the third target that represent the database required by the service. You
might notice that we changed the way ports are specified. In the docker-compose-dev.yml⁷¹ we had
two numbers separated by a colon (8080:8080). The first one was the port Docker would expose
to the host while the second one is the internal port used by the server inside the container. The
docker-compose.yml is a bit different and has only the internal port set. The reason behind that is
the elimination of potential conflicts. While in the development environment we tend to run only a
small number of services (those we need at the moment), in production wemight run tens, hundreds,
or even thousands of them at the same time. Having predefined ports can easily result in conflicts.
If two of them are using the same port, the result will be a failure. For that reason, we’ll let Docker
expose a random port to the host.

Let us run the Docker Compose app target.

⁷⁰https://github.com/vfarcic/books-ms/blob/master/docker-compose.yml
⁷¹https://github.com/vfarcic/books-ms/blob/master/docker-compose-dev.yml

https://github.com/vfarcic/books-ms/blob/master/docker-compose.yml
https://github.com/vfarcic/books-ms/blob/master/docker-compose-dev.yml
https://github.com/vfarcic/books-ms/blob/master/docker-compose.yml
https://github.com/vfarcic/books-ms/blob/master/docker-compose-dev.yml

Implementation of the Deployment Pipeline: Intermediate Stages 92

1 export DOCKER_HOST=tcp://prod:2375

2

3 docker-compose up -d app

We exported the DOCKER_HOST variable that tells local Docker client to send commands to the
remote one located on the prod node and port 2375. The second command run the Docker Compose
target app. Since DOCKER_HOST is pointing to the remote host, the app target and linked container
db were deployed to the prod server. We did not even have to enter the destination server. The
deployment was done remotely.

For security reasons, the ability to invoke remote Docker API is disabled by default. However, one
of the Ansible playbook tasks was to change that behaviour by modifying the /etc/default/docker
configuration file. Its content is as follows.

1 DOCKER_OPTS="$DOCKER_OPTS --insecure-registry 10.100.198.200:5000 -H tcp://0.0.0\

2 .0:2375 -H unix:///var/run/docker.sock"

The –insecure-registry allows Docker to pull images from our private registry located in the cd node
(10.100.198.200). The -H argument tells Docker to listen to remote requests from any address (0.0.0.0)
on the port 2375. Please note that in the “real” production environment, we would need to be much
more restrictive and allow only trusted addresses to access the remote Docker API.

We can confirm that both containers are indeed running on the prod VM by executing another
remote call.

1 docker-compose ps

The output is as follows.

1 Name Command State Ports

2 ---

3 vagrant_app_1 /run.sh Up 0.0.0.0:32770->8080/tcp

4 vagrant_db_1 /entrypoint.sh mongod Up 27017/tcp

Since Docker assigned a random port to the service’s internal port 8080, we need to find it out. That
can be done with the inspect command.

1 docker inspect vagrant_app_1

The part of the output that interests us should be similar to the following.

Implementation of the Deployment Pipeline: Intermediate Stages 93

1 ...

2 "NetworkSettings": {

3 "Bridge": "",

4 "EndpointID": "45a8ea03cc2514b128448...",

5 "Gateway": "172.17.42.1",

6 "GlobalIPv6Address": "",

7 "GlobalIPv6PrefixLen": 0,

8 "HairpinMode": false,

9 "IPAddress": "172.17.0.4",

10 "IPPrefixLen": 16,

11 "IPv6Gateway": "",

12 "LinkLocalIPv6Address": "",

13 "LinkLocalIPv6PrefixLen": 0,

14 "MacAddress": "02:42:ac:11:00:04",

15 "NetworkID": "dce90f852007b489f4a2fe...",

16 "PortMapping": null,

17 "Ports": {

18 "8080/tcp": [

19 {

20 "HostIp": "0.0.0.0",

21 "HostPort": "32770"

22 }

23]

24 },

25 "SandboxKey": "/var/run/docker/netns/f78bc787f617",

26 "SecondaryIPAddresses": null,

27 "SecondaryIPv6Addresses": null

28 },

29 ...

The original output is much bigger than this and it contains all the info we might (or might not)
need. What we are interested in right now is the NetworkSettings.Ports section that, in my case,
gives us HostPort 32770 mapped to the internal port 8080. We can do better than that and use the
–format argument.

1 PORT=$(docker inspect \

2 --format='{{(index (index .NetworkSettings.Ports "8080/tcp") 0).HostPort}}' \

3 vagrant_app_1)

4

5 echo $PORT

Do not get scared by the –format value syntax. It uses Go’s text/template⁷² format and indeed can

⁷²http://golang.org/pkg/text/template/

http://golang.org/pkg/text/template/
http://golang.org/pkg/text/template/

Implementation of the Deployment Pipeline: Intermediate Stages 94

be a bit daunting. The good news is that we’ll use much better ways to do this once we get to service
discovery chapter. This is only the temporary workaround.

We got our port and stored it to the PORT variable. Now we can repeat cURL commands we already
got familiar with and confirm that the service is running and is connected to the DB.

1 curl -H 'Content-Type: application/json' -X PUT -d \

2 "{\"_id\": 1,

3 \"title\": \"My First Book\",

4 \"author\": \"John Doe\",

5 \"description\": \"Not a very good book\"}" \

6 http://prod:$PORT/api/v1/books \

7 | jq '.'

8

9 curl -H 'Content-Type: application/json' -X PUT -d \

10 "{\"_id\": 2,

11 \"title\": \"My Second Book\",

12 \"author\": \"John Doe\",

13 \"description\": \"Not a bad as the first book\"}" \

14 http://prod:$PORT/api/v1/books \

15 | jq '.'

16

17 curl -H 'Content-Type: application/json' -X PUT -d \

18 "{\"_id\": 3,

19 \"title\": \"My Third Book\",

20 \"author\": \"John Doe\",

21 \"description\": \"Failed writers club\"}" \

22 http://prod:$PORT/api/v1/books \

23 | jq '.'

24

25 curl http://prod:$PORT/api/v1/books \

26 | jq '.'

27

28 curl http://prod:$PORT/api/v1/books/_id/1 \

29 | jq '.'

The output of the last command is as follows.

Implementation of the Deployment Pipeline: Intermediate Stages 95

1 {

2 "_id": 1,

3 "author": "John Doe",

4 "description": "Not a very good book",

5 "title": "My First Book"

6 }

As before, when we run the same command in the development environment, we inserted three
books to the database and confirmed that they can be retrieved from the database. However, this is
not an efficient way of verifying whether the service was deployed correctly. We can do better than
that and run the integration tests.

The important thing to note is that we have not even entered into the prod node. All the deployment
commands were done through the remote Docker API.

Docker UI

This might be a good opportunity to introduce a nice open source project DockerUI⁷³. It is defined
as part of the docker Ansible role so it is running on all servers where we configure Docker. We can,
for example, see the instance running on the prod node by opening http://10.100.198.201:9000⁷⁴ from
any browser.

Please note that all IPs created through Vagrant are set to be private, meaning that they
can be accessed only from the host machine. If that happens to be your laptop, you should
not have a problem to open the DockerUI address in your browser. On the other hand, if
you are running the examples on one of your corporate servers, please make sure that you
can access it’s desktop and that a browser is installed. If you need to access that server
remotely, please try one of remote desktop solutions like VNC⁷⁵.

⁷³https://github.com/crosbymichael/dockerui
⁷⁴http://10.100.198.201:9000
⁷⁵https://www.realvnc.com/

https://github.com/crosbymichael/dockerui
http://10.100.198.201:9000
https://www.realvnc.com/
https://github.com/crosbymichael/dockerui
http://10.100.198.201:9000
https://www.realvnc.com/

Implementation of the Deployment Pipeline: Intermediate Stages 96

Figure 7-2: DockerUI dashboard screen

While it is much more efficient to operate containers through CLI, the DockerUI provides a very
useful way to gain a general overview of the system and details related to each container, network,
and images. It true usefulness can be seen when a big number of containers is running in a cluster.
It is very lightweight so it won’t use much of your resources.

Unless specified otherwise, you’ll find it running on each VM we set up.

The Checklist

Beforewemove on, let’s see wherewe arewith our basic implementation of the deployment pipeline.

1. Checkout the code - Done
2. Run pre-deployment tests - Done
3. Compile and/or package the code - Done
4. Build the container - Done
5. Push the container to the registry - Done
6. Deploy the container to the production server - Done
7. Integrate the container - Pending

Implementation of the Deployment Pipeline: Intermediate Stages 97

8. Run post-deployment tests - Pending
9. Push the tests container to the registry - Pending

Figure 7-3: The intermediate stages of the deployment pipeline with Docker

Please note that, unlike the steps we did in the previous chapter, the deployment was performed
in the production environment through remote Docker API. If we deployed the second release, we
would have a period which neither the old nor the new release were operational. One would need to
be stopped while the other would require some time to be brought up. No matter whether this period
was short or not, we would have down-time that, in itself, would prevent us from moving towards
continues deployment. All we’ll do for now is take a note of this problem. Later on, we’ll explore
the blue-green deployment procedure that will help us overcome this issue and proceed towards the
quest for zero-downtime deployments.

We’re making progress and only three tasks are left on the checklist. However, the application is
not yet integrated and, therefore, we cannot run integration tests. In order to proceed, there are two
more concepts we need to explore; service discovery and reverse proxy.

We’ll use a new set of virtual machines while experimenting with service discovery tools, so let us
save some resources and destroy the VMs we’re running. We’ll create those that we need in the next
chapter. “‘bash exit

vagrant destroy -f “‘

Service Discovery: The Key to
Distributed Services
It does not take much strength to do things, but it requires a great deal of strength to decide what to

do

–â€ŠElbert Hubbard

The more services we have, the bigger the chance for a conflict to occur if we are using predefined
ports. After all, there can be no two services listening on the same port. Managing an accurate list of
all the ports used by, let’s say, a hundred services is a challenge in itself. Add to that list the databases
those services need and the number grows even more. For that reason, we should deploy services
without specifying ports and letting Docker assign random ones for us. The only problem is that we
need to discover the port number and let others know about it.

Figure 8-1: Single node with services deployed as Docker containers

Things will get even more complicated later on when we start working on a distributed system with
services deployed into one of the multiple servers. We can choose to define in advance which service
goes to which server, but that would cause a lot of problems.We should try to utilize server resources
as best we can, and that is hardly possible if we define in advance where to deploy each service.
Another problem is that automatic scaling of services would be difficult at best, and not to mention
automatic recuperation from, let’s say, server failure. On the other hand, if we deploy services to
the server that has, for example, least number of containers running, we need to add the IP to the
list of data needed to be discovered and stored somewhere.

98

Service Discovery: The Key to Distributed Services 99

Figure 8-2: Multiple nodes with services deployed as Docker containers

There are many other examples of cases when we need to store and retrieve (discover) some
information related to the services we are working with.

To be able to locate our services, we need at least the following two processes to be available for us.

• Service registration process that will store, as a minimum, the host and the port service is
running on.

• Service discovery process that will allow others to be able to discover the information we
stored during the registration process.

Figure 8-3: Service registration and discovery

Besides those processes, we need to consider several other aspects. Should we unregister the service
if it stops working and deploy/register a new instance?What happens when there are multiple copies
of the same service? How do we balance the load among them?What happens if a server goes down?
Those and many other questions are tightly related to the registration and discovery processes and
will be the subject of the next chapters. For now, we’ll limit the scope only to the service discovery
(tthe common name that envelops both processes mentioned above) and the tools we might use for
such a task. Most of them feature highly available distributed key/value storage.

Service Discovery: The Key to Distributed Services 100

Service Registry

The goal of the service registry is simple. Provide capabilities to store service information, be fast,
persistent, fault-tolerant, and so on. In its essence, service registry is a database with a very limited
scope. While other databases might need to deal with a vast amount of data, service registry expects
a relatively small data load. Due to the nature of the task, it should expose some API so that those
in need of it’s data can access it easily.

There’s not much more to be said (until we start evaluating different tools) so we’ll move on to
service registration.

Service Registration

Microservices tend to be very dynamic. They are created and destroyed, deployed to one server and
then moved to another. They are always changing and evolving. Whenever there is any change in
service properties, information about those changes needs to be stored in some database (we’ll call it
service registry or simply registry). The logic behind service registration is simple even though the
implementation of that logic might become complicated. Whenever a service is deployed, its data (IP
and port as a minimum) should be stored in the service registry. Things are a bit more complicated
when a service is destroyed or stopped. If that is a result of a purposeful action, service data should
be removed from the registry. However, there are cases when service is stopped due to a failure and
in such a situation we might choose to do additional actions meant to restore the correct functioning
of that service. We’ll speak about such a situation in more details when we reach the self-healing
chapter.

There are quite a few ways service registration can be performed.

Self-Registration

Self-registration is a common way to register service information. When a service is deployed it
notifies the registry about its existence and sends its data. Since each service needs to be capable of
sending its data to the registry, this can be considered an anti-pattern. By using this approach, we
are breaking single concern and bounded context principles that we are trying to enforce inside our
microservices. We’d need to add the registration code to each service and, therefore, increase the
development complexity. More importantly, that would couple services to a specific registry service.
Once their number increases, modifying all of them to, for example, change the registry would be
a very cumbersome work. Besides, that was one of the reasons we moved away from monolithic
applications; freedom to modify any service without affecting the whole system. The alternative
would be to create a library that would do that for us and include it in each service. However,
this approach would severally limit our ability to create entirely self-sufficient microservices. We’d
increase their dependency on external resources (in this case the registration library).

Service Discovery: The Key to Distributed Services 101

De-registration is, even more, problematic and can quickly become quite complicated with the self-
registration concept. When a service is stopped purposely, it should be relatively easy to remove
its data from the registry. However, services are not always stopped on purpose. They might fail in
unexpected ways and the process they’re running in might stop. In such a case it might be difficult
(if not impossible) to always be able to de-register the service from itself.

Figure 8-4: Self-registration

While self-registration might be common, it is not an optimum nor productive way to perform this
type of operations. We should look at alternative approaches.

Registration Service

Registration service or third party registration is a process that manages registration and de-
registration of all services. The service is in charge of checking which microservices are running and
should update the registry accordingly. A similar process is applied when services are stopped. The
registration service should detect the absence of a microservice and remove its data from the registry.
As an additional function, it can notify some other process of the absence of the microservice that
would, in turn, perform some corrective actions like re-deployment of the absent microservice, email
notifications, and so on. We’ll call this registration and de-registration process service registrator or
simply registrator (actually, as you’ll soon see, there is a product with the same name).

Service Discovery: The Key to Distributed Services 102

Figure 8-5: Registration service

A separate registration service is a much better option than self-registration. It tends to be more
reliable and, at the same time, does not introduce unnecessary coupling inside our microservices
code.

Since we established what will be the underlying logic behind the services registration process, it is
time to discuss the discovery.

Service Discovery

Service discovery is the opposite of service registration. When a client wants to access a service
(the client might also be another service), it must know, as a minimum, where that service is. One
approach we can take is self-discovery.

Self-Discovery

Self-discovery uses the same principles as self-registration. Every client or a service that wants to
access other services would need to consult the registry. Unlike self-registration that posed problems
mostly related to our internal ways to connect services, self-discovery might be used by clients and
services outside our control. One example would be a front-end running in user browsers. That
front-end might need to send requests to many separate back-end services running on different
ports or even different IPs. The fact that we do have the information stored in the registry does not
mean that others can, should, or know how to use it. Self-discovery can be effectively used only for
the communication between internal services. Even such a limited scope poses a lot of additional

Service Discovery: The Key to Distributed Services 103

problems many of which are the same as those created by self-registration. Due to what we know
by now, this option should be discarded.

Proxy Service

Proxy services have been around for a while and proved their worth many times over. The next
chapter will explore them in more depth so we’ll go through them only briefly. The idea is that each
service should be accessible through one or more fixed addresses. For example, the list of books from
our books-ms service should be available only through the [DOMAIN]/api/v1/books address. Notice
that there is no IP, port nor any other deployment-specific detail. Since there will be no service with
that exact address, something will have to detect such a request and redirect it to the IP and port of
the actual service. Proxy services tend to be the best type of tools that can fulfill this task.

Now that we have a general, and hopefully clear, idea of what we’re trying to accomplish, let’s take
a look at some of the tools that can help us out.

Service Discovery Tools

The primary objective of service discovery tools is to help services find and talk to one another. To
perform their duty, they need to know where each service is. The concept is not new, and many
tools existed long before Docker was born. However, containers brought the need for such tools to
a whole new level.

The basic idea behind service discovery is for each new instance of a service (or application) to be
able to identify its current environment and store that information. Storage itself is performed in a
registry usually in key/value format. Since the discovery is often used in distributed system, registry
needs to be scalable, fault-tolerant and distributed among all nodes in the cluster. The primary usage
of such a storage is to provide, as a minimum, IP and port of a service to all interested parties that
might need to communicate with it. This data is often extended with other types of information.

Discovery tools tend to provide some API that can be used by a service to register itself as well as
by others to find the information about that service.

Let’s say that we have two services. One is a provider, and the other one is its consumer. Once
we deploy the provider, we need to store its information in the service registry of choice. Later
on, when the consumer tries to access the provider, it would first query the registry and call the
provider using the IP and port obtained from the registry. To decouple the consumer from a particular
implementation of the registry, we often employ some proxy service. That way the consumer would
always request information from the fixed address that would reside inside the proxy that, in turn,
would use the discovery service to find out the provider information and redirect the request.
Actually, in many cases, there is no need for the proxy to query the service registry if there is a
process that updates its configuration every time data in the registry changes. We’ll go through
reverse proxy later on in the book. For now, it is important to understand that the flow that is based
on three actors; consumer, proxy, and provider.

Service Discovery: The Key to Distributed Services 104

What we are looking for in the service discovery tools is data. As a minimum, we should be able
to find out where the service is, whether it is healthy and available, and what is its configuration.
Since we are building a distributed system with multiple servers, the tool needs to be robust, and
failure of one node should not jeopardize data. Also, each of the nodes should have the same data
replica. Further on, we want to be able to start services in any order, be able to destroy them, or to
replace them with newer versions. We should also be able to reconfigure our services and see the
data change accordingly.

Let’s take a look at a few of the tools we can use to accomplish the goals we set.

Manual Configuration

Most of the services are still managed manually. We decide in advance where to deploy the service,
what is its configuration and hope beyond reason that it will continue working properly until the
end of days. Such approach is not easily scalable. Deploying a second instance of the service means
that we need to start the manual process all over. We have to bring up a new server or find out
which one has low utilization of resources, create a new set of configurations and deploy it. The
situation is even more complicated in the case of, let’s say, a hardware failure since the reaction
time is usually slow when things are managed manually. Visibility is another sore point. We know
what the static configuration is. After all, we prepared it in advance. However, most of the services
have a lot of information generated dynamically. That information is not easily visible. There is no
single location we can consult when we are in need of that data.

Reaction time is inevitably slow, failure resilience questionable at best and monitoring difficult to
manage due to a lot of manually handled moving parts.

While there was an excuse to do this job manually in the past or when the number of services and/or
servers is small, with the emergence of service discovery tools, this excuse quickly evaporated.

Zookeeper

ZooKeeper⁷⁶ is one of the oldest projects of this type. It originated out of the Hadoop world, where it
was built to help the maintenance of various components in a Hadoop cluster. It is mature, reliable
and used by many big companies (YouTube, eBay, Yahoo, and so on). The format of the data it stores
is similar to the organization of the file system. If run on a server cluster, Zookeeper will share the
state of the configuration across all of the nodes. Each cluster elects a leader and clients can connect
to any of the servers to retrieve data.

The main advantages Zookeeper brings to the table is its maturity, robustness, and feature richness.
However, it comes with its set of disadvantages, with Java and complexity being main culprits.
While Java is great for many use cases, it is massive for this type of work. Zookeeper’s usage of
Java, together with a considerable number of dependencies, makes Zookeeper much more resource

⁷⁶http://zookeeper.apache.org/

http://zookeeper.apache.org/
http://zookeeper.apache.org/

Service Discovery: The Key to Distributed Services 105

hungry that its competition. On top of those problems, Zookeeper is complex.Maintaining it requires
considerably more knowledge than we should expect from an application of this type. That is the
part where feature richness converts itself from an advantage to a liability. The more features an
application has, the bigger the chances that we won’t need all of them. Thus, we end up paying the
price in the form of complexity for something we do not fully need.

Zookeeper paved the way that others followed with considerable improvements. “Big players” are
using it because there were no better alternatives at the time. Today, Zookeeper shows its age, and
we are better off with alternatives.

We’ll skip Zookeeper examples and skip straight into better options.

etcd

etcd⁷⁷ is a key/value store accessible through HTTP. It is distributed and features hierarchical
configuration system that can be used to build service discovery. It is very easy to deploy, setup
and use, provides reliable data persistence, it’s secure and with excellent documentation.

etcd is a better option than Zookeeper due to its simplicity. However, it needs to be combined with
a few third-party tools before it can serve service discovery objectives.

Setting Up etcd

Let us set up the etcd. First, we should create the first node in the cluster (serv-disc-01) together with
the, already familiar, cd VM.

1 vagrant up cd serv-disc-01 --provision

2

3 vagrant ssh serv-disc-01

With the cluster node serv-disc-01 up and running, we can install etcd and etcdctl (etcd command
line client).

⁷⁷https://github.com/coreos/etcd

https://github.com/coreos/etcd
https://github.com/coreos/etcd

Service Discovery: The Key to Distributed Services 106

1 curl -L https://github.com/coreos/etcd/releases/\

2 download/v2.1.2/etcd-v2.1.2-linux-amd64.tar.gz \

3 -o etcd-v2.1.2-linux-amd64.tar.gz

4

5 tar xzf etcd-v2.1.2-linux-amd64.tar.gz

6

7 sudo mv etcd-v2.1.2-linux-amd64/etcd* /usr/local/bin

8

9 rm -rf etcd-v2.1.2-linux-amd64*

10

11 etcd >/tmp/etcd.log 2>&1 &

We downloaded, uncompressed and moved the executables to /usr/local/bin so that they are easily
accessible. Then, we removed unneeded files and, finally, run the etcd with output redirected to
/tmp/etcd.log.

Let’s see what we can do with etcd.

Basic operations are set and get. Please note that we can set a key/value inside a directory.

1 etcdctl set myService/port "1234"

2

3 etcdctl set myService/ip "1.2.3.4"

4

5 etcdctl get myService/port # Outputs: 1234

6

7 etcdctl get myService/ip # Outputs: 1.2.3.4

The first command put the key port with the value 1234 into the directory myService. The second
did the same with the key ip, and the last two commands were used to output values of those two
keys.

We can also list all the keys in the specified directory or delete a key with its value.

1 etcdctl ls myService

2

3 etcdctl rm myService/port

4

5 etcdctl ls myService

The last command output only the /myService/ip value since previous command removed the port.

Besides etcdctl, we can also run all commands through HTTP API. Before we try it out, let’s install
jq so that we can see the formatted output.

Service Discovery: The Key to Distributed Services 107

1 sudo apt-get install -y jq

We can, for example, put a value into etcd through its HTTP API and retrieve it through a GET
request.

1 curl http://localhost:2379/v2/keys/myService/newPort \

2 -X PUT \

3 -d value="4321" | jq '.'

4

5 curl http://localhost:2379/v2/keys/myService/newPort \

6 | jq '.'

The jq '.' is not required, but I tend to use it often to format JSON. The output should be similar
to the following.

1 {

2 "action": "set",

3 "node": {

4 "createdIndex": 16,

5 "key": "/myService/newPort",

6 "modifiedIndex": 16,

7 "value": "4321"

8 }

9 }

10

11 {

12 "action": "get",

13 "node": {

14 "createdIndex": 16,

15 "key": "/myService/newPort",

16 "modifiedIndex": 16,

17 "value": "4321"

18 }

19 }

HTTP API is especially useful when we need to query etcd remotely. In most, I prefer the etcdctl,
when running ad-hoc commands while HTTP is a preferred way to interact with etcd through some
code.

Now that we’ve seen (briefly) how etcd works on a single server, let us try it inside a cluster.
The cluster setup requires a few additional arguments to be passed to etcd. Let’s say that we’ll
have a cluster of three nodes with IPs 10.100.197.201 (serv-disc-01), 10.100.197.202 (serv-disc-02) and
10.100.197.203 (serv-disc-03). The etcd command that should be run on the first server would be the
following (please don’t run it yet).

Service Discovery: The Key to Distributed Services 108

1 NODE_NAME=serv-disc-0$NODE_NUMBER

2 NODE_IP=10.100.197.20$NODE_NUMBER

3 NODE_01_ADDRESS=http://10.100.197.201:2380

4 NODE_01_NAME=serv-disc-01

5 NODE_01="$NODE_01_NAME=$NODE_01_ADDRESS"

6 NODE_02_ADDRESS=http://10.100.197.202:2380

7 NODE_02_NAME=serv-disc-02

8 NODE_01="$NODE_02_NAME=$NODE_02_ADDRESS"

9 NODE_03_ADDRESS=http://10.100.197.203:2380

10 NODE_03_NAME=serv-disc-03

11 NODE_01="$NODE_03_NAME=$NODE_03_ADDRESS"

12 CLUSTER_TOKEN=serv-disc-cluster

13

14 etcd -name serv-disc-1 \

15 -initial-advertise-peer-urls http://$NODE_IP:2380 \

16 -listen-peer-urls http://$NODE_IP:2380 \

17 -listen-client-urls \

18 http://$NODE_IP:2379,http://127.0.0.1:2379 \

19 -advertise-client-urls http://$NODE_IP:2379 \

20 -initial-cluster-token $CLUSTER_TOKEN \

21 -initial-cluster \

22 $NODE_01,$NODE_02,$NODE_03 \

23 -initial-cluster-state new

I extracted parts that would change from one server (or a cluster) to another into variables so that
you can see them clearly. We won’t go into details of what each argument means. You can find more
information in the etcd clustering guide⁷⁸. Suffice to say that we specified the IP and the name of
the server where this command should run as well as the list of all the servers in the cluster.

Before we start working on the etcd deployment to the cluster, let us kill the currently running
instance and create the rest of servers (there should be three in total).

1 pkill etcd

2

3 exit

4

5 vagrant up serv-disc-02 serv-disc-03

Doing the same set of tasks manually across multiple servers is tedious and error prone. Since we
already worked with Ansible, we can use it to set up etcd across the cluster. This should be a fairly
easy task since we already have all the commands, and all we have to do is translate those we already

⁷⁸https://github.com/coreos/etcd/blob/master/Documentation/clustering.md

https://github.com/coreos/etcd/blob/master/Documentation/clustering.md
https://github.com/coreos/etcd/blob/master/Documentation/clustering.md

Service Discovery: The Key to Distributed Services 109

run into the Ansible format. We can create the etcd role and add it to the playbook with the same
name. The role is fairly simple. It copies the executables to the /usr/local/bin directory and runs etcd
with the cluster arguments (the very long command we examined above). Let us take a look at it
before running the playbook.

The first task in the roles/etcd/tasks/main.yml⁷⁹ is as follows.

1 - name: Files are copied

2 copy:

3 src: "{{ item.src }}"

4 dest: "{{ item.dest }}"

5 mode: 0755

6 with_items: files

7 tags: [etcd]

The name is purely descriptive and followed with the copy module⁸⁰. Then, we are specifying few
of the module options. The copy option src indicates the name of the local file we want to copy and
is relative to the files directory inside the role. The second copy option (dest) is the destination path
on the remote server. Finally, we are setting the mode to be 755. The user that runs with roles will
have read/write/execute permissions, and those belonging to the same group and everyone else will
be assigned read/execute permissions. Next is the with_items declaration that allows us to use a list
of values. In this case, the values are specified in the roles/etcd/defaults/main.yml⁸¹ file and are as
follows.

1 files: [

2 {src: 'etcd', dest: '/usr/local/bin/etcd'},

3 {src: 'etcdctl', dest: '/usr/local/bin/etcdctl'}

4]

Externalizing variables is a good way to keep things that might change in the future separated from
the tasks. If, for example, we are to copy another file through this role, we’d add it here and avoid
even opening the tasks file. The task that uses the files variable will iterate for each value in the
list and, in this case, run twice; once for etcd and the second time for etcdctl. Values from variables
are represented with the variable key surrounded with {{ and }} and use the Jinja2 format⁸². Finally,
we set etcd to be the tag associated with this task. Tags can be used to filter tasks when running
playbooks and are very handy when we want to run only a subset of them or when we want to
exclude something.

The second task is as follows.

⁷⁹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/etcd/tasks/main.yml
⁸⁰http://docs.ansible.com/ansible/copy_module.html
⁸¹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/etcd/defaults/main.yml
⁸²http://docs.ansible.com/ansible/playbooks_variables.html#using-variables-about-jinja2

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/etcd/tasks/main.yml
http://docs.ansible.com/ansible/copy_module.html
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/etcd/defaults/main.yml
http://docs.ansible.com/ansible/playbooks_variables.html#using-variables-about-jinja2
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/etcd/tasks/main.yml
http://docs.ansible.com/ansible/copy_module.html
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/etcd/defaults/main.yml
http://docs.ansible.com/ansible/playbooks_variables.html#using-variables-about-jinja2

Service Discovery: The Key to Distributed Services 110

1 - name: Is running

2 shell: "nohup etcd -name {{ ansible_hostname }} \

3 -initial-advertise-peer-urls \

4 http://{{ ip }}:2380 \

5 -listen-peer-urls \

6 http://{{ ip }}:2380 \

7 -listen-client-urls \

8 http://{{ ip }}:2379,http://127.0.0.1:2379 \

9 -advertise-client-urls \

10 http://{{ ip }}:2379 \

11 -initial-cluster-token {{ cl_token }} \

12 -initial-cluster \

13 {{ cl_node_01 }},{{ cl_node_02 }},{{ cl_node_03 }} \

14 -initial-cluster-state new \

15 >/var/log/etcd.log 2>&1 &"

16 tags: [etcd]

Shell module⁸³ is often the last resort since it does not work with states. In most cases, commands run
as through shell will not checkwhether something is in the correct state or not and run every timewe
execute Ansible playbook. However, etcd always runs only a single instance and there is no risk that
multiple executions of this command will produce multiple instances. we have a lot of arguments
and all those that might change are put as variables. Some of them, like ansible_hostname, are
discovered by Ansible. Others were defined by us and placed in the roles/etcd/defaults/main.yml⁸⁴.
With all the tasks defined, we can take a look at the playbook etcd.yml⁸⁵.

1 - hosts: etcd

2 remote_user: vagrant

3 serial: 1

4 sudo: yes

5 roles:

6 - common

7 - etcd

When this playbook is run, Ansible will configure all the servers defined in an inventory, use vagrant
as the remote user, run commands as sudo and execute the common and etcd roles.

Let us take a look at the hosts/serv-disc⁸⁶ file. It is our inventory that contains the list of all hosts
we’re using.

⁸³http://docs.ansible.com/ansible/shell_module.html
⁸⁴https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/etcd/defaults/main.yml
⁸⁵https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/etcd.yml
⁸⁶https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/serv-disc

http://docs.ansible.com/ansible/shell_module.html
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/etcd/defaults/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/etcd.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/serv-disc
http://docs.ansible.com/ansible/shell_module.html
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/etcd/defaults/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/etcd.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/serv-disc

Service Discovery: The Key to Distributed Services 111

1 [etcd]

2 10.100.194.20[1:3]

In this example, you can a different way to define hosts. The second line is Ansible’s way of saying
that all addresses between 10.100.194.201 and 10.100.194.203 should be used. In total, we have three
IPs specified for this purpose.

Let’s run the etcd playbook and see it in action.

1 vagrant ssh cd

2

3 ansible-playbook \

4 /vagrant/ansible/etcd.yml \

5 -i /vagrant/ansible/hosts/serv-disc

We can check whether etcd cluster was correctly set by putting a value through one server and
getting it from the another.

1 curl http://serv-disc-01:2379/v2/keys/test \

2 -X PUT \

3 -d value="works" | jq '.'

4

5 curl http://serv-disc-03:2379/v2/keys/test \

6 | jq '.'

The output of those commands should be similar to the following.

1 {

2 "action": "set",

3 "node": {

4 "createdIndex": 8,

5 "key": "/test",

6 "modifiedIndex": 8,

7 "value": "works"

8 }

9 }

10

11 {

12 "action": "get",

13 "node": {

14 "createdIndex": 8,

15 "key": "/test",

Service Discovery: The Key to Distributed Services 112

16 "modifiedIndex": 8,

17 "value": "works"

18 }

19 }

We sent the HTTP PUT request to the serv-disc-01 server (10.100.197.201) and retrieved the stored
value through the HTTP GET request from the serv-disc-03 (10.100.197.203) node. In other words,
data set through any of the servers in the cluster is available in all of them. Isn’t that neat?

Our cluster (after we deploy few containers), would look as presented in the figure 8-6.

Figure 8-6: Multiple nodes with Docker containers and etcd

Now that we have a place to store the information related to our services, we need a tool that will
send that information to etcd automatically. After all, why would we put data to etcd manually if
that can be done automatically? Even if we would want to put the information manually to etcd,
we often don’t know what that information is. Remember, services might be deployed to a server
with least containers running and it might have a random port assigned. Ideally, that tool should
monitor Docker on all nodes and update etcd whenever a new container is run, or an existing one
is stopped. One of the tools that can help us with this goal is Registrator.

Setting Up Registrator

Registrator⁸⁷ automatically registers and deregisters services by inspecting containers as they are
brought online or stopped. It currently supports etcd, Consul and SkyDNS 2.

Setting up Registrator with etcd registry is easy. We can simply run the Docker container as follows
(please do not run it yourself).

⁸⁷https://github.com/gliderlabs/registrator

https://github.com/gliderlabs/registrator
https://github.com/gliderlabs/registrator

Service Discovery: The Key to Distributed Services 113

1 docker run -d --name registrator \

2 -v /var/run/docker.sock:/tmp/docker.sock \

3 -h serv-disc-01 \

4 gliderlabs/registrator \

5 -ip 10.100.194.201 etcd://10.100.194.201:2379

With this command we are sharing /var/run/docker.sock as Docker volume. Registrator will monitor
and intercept Docker events and, depending on the event type, put or remove service information
to/from etcd. With the -h argument we are specifying the hostname. Finally, we are passing two
arguments to Registrator. The first one is the -ip and represents the IP of the host and the second
one is the protocol (etcd), the IP (serv-disc-01) and the port (2379) of the registration service.

Before we proceed, let’s create a new Ansible role called registrator and deploy it to all nodes inside
the cluster. The roles/registrator/tasks/main.yml⁸⁸ file is as follows.

1 - name: Container is running

2 docker:

3 name: "{{ registrator_name }}"

4 image: gliderlabs/registrator

5 volumes:

6 - /var/run/docker.sock:/tmp/docker.sock

7 hostname: "{{ ansible_hostname }}"

8 command: -ip {{ facter_ipaddress_eth1 }} {{ registrator_protocol }}://{{ fac\

9 ter_ipaddress_eth1 }}:2379

10 tags: [etcd]

This Ansible role is equivalent to the manual command we saw earlier. Please note that we changed
the hard-coded etcd protocol with a variable. That way we can reuse this role with other registries
as well. Keep in mind that having quotes is not mandatory in Ansible except when value starts with
{{ as in the case of the hostname value.

Let’s take a look at the registrator-etcd.yml⁸⁹ playbook.

⁸⁸https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/registrator/tasks/main.yml
⁸⁹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/registrator-etcd.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/registrator/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/registrator-etcd.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/registrator/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/registrator-etcd.yml

Service Discovery: The Key to Distributed Services 114

1 - hosts: all

2 remote_user: vagrant

3 serial: 1

4 sudo: yes

5 vars:

6 - registrator_protocol: etcd

7 - registrator_port: 2379

8 roles:

9 - common

10 - docker

11 - etcd

12 - registrator

Most of the playbook is similar to those we used before except the vars key. In this case, we’re using
it to define the Registrator protocol as etcd and port of the registry as 2379.

With everything in place, we can run the playbook.

1 ansible-playbook \

2 /vagrant/ansible/registrator-etcd.yml \

3 -i /vagrant/ansible/hosts/serv-disc

Once the playbook is finished executing, Registrator will be running on all three nodes of our cluster.

Let’s give Registrator a spin and run one container inside one of the three cluster nodes.

1 export DOCKER_HOST=tcp://serv-disc-02:2375

2

3 docker run -d --name nginx \

4 --env SERVICE_NAME=nginx \

5 --env SERVICE_ID=nginx \

6 -p 1234:80 \

7 nginx

We exported the DOCKER_HOST variable so that Docker commands are sent to the cluster node 2
(serv-disc-02) and run the nginx container exposing port 1234. We’ll use nginx later on, and there
will be plenty of opportunities to get familiar with it. For now, we are not interested in what nginx
does, but that Registrator detected it and stored the information in etcd. In this case, we put a few
environment variables (SERVICE_NAME and SERVICE_ID) that Registrator can use to identify better
the service.

Let us take a look at Registrator’s log.

Service Discovery: The Key to Distributed Services 115

1 docker logs registrator

The output should be similar to the following.

1 2015/08/30 19:18:12 added: 5cf7dd974939 nginx

2 2015/08/30 19:18:12 ignored: 5cf7dd974939 port 443 not published on host

We can see that Registrator detected nginx container with the ID 5cf7dd974939. We can also see
that it ignored the port 443. The nginx container internally exposes ports 80 and 443. However, we
exposed only 80 to the outside world, so Registrator decided to ignore the port 443. After all, why
would we store the information about the port not accessible to anyone?

Now, let us take a look at data stored in etcd.

1 curl http://serv-disc-01:2379/v2/keys/ | jq '.'

2

3 curl http://serv-disc-01:2379/v2/keys/nginx/ | jq '.'

4

5 curl http://serv-disc-01:2379/v2/keys/nginx/nginx | jq '.'

The output of the last command is as follows.

1 {

2 "node": {

3 "createdIndex": 13,

4 "modifiedIndex": 13,

5 "value": "10.100.194.202:1234",

6 "key": "/nginx/nginx"

7 },

8 "action": "get"

9 }

The first command listed all keys at the root, the second listed all those inside nginx and the
last one retrieved the final value. Registrator stored values in the format <NAME>/<ID> that
matches environment variables we used when running the container. The value that Registrator put
corresponds with the IP of the host where the container is running and the port that we exposed.

Please note that even though the container is run on the node 2, we queried etcd running on the
node 1. It was yet another demonstration that data is replicated across all nodes etcd is running on.

What happens when we remove the container?

Service Discovery: The Key to Distributed Services 116

1 docker rm -f nginx

2

3 docker logs registrator

The output of Registrator logs should be similar to the following.

1 ...

2 2015/08/30 19:32:31 removed: 5cf7dd974939 nginx

Registrator detected that we removed the container and sent a request to etcd to remove correspond-
ing values. We can confirm that with the following command.

1 curl http://serv-disc-01:2379/v2/keys/nginx/nginx | jq '.'

The output is as follows.

1 {

2 "index": 14,

3 "cause": "/nginx/nginx",

4 "message": "Key not found",

5 "errorCode": 100

6 }

The service with the ID nginx/nginx disappeared.

Registrator combined with etcd is a powerful, yet simple, combination that will allow us to practice
many advanced techniques. Whenever we bring up a container, data will be stored in etcd and
propagated to all nodes in the cluster. What we’ll do with that information will be the subject of the
next chapter.

Figure 8-7: Multiple nodes with Docker containers, etcd and Registrator

There is one more piece of the puzzle missing. We need a way to create configuration files with data
stored in etcd as well as run some commands when those files are created.

Service Discovery: The Key to Distributed Services 117

Setting Up confd

confd⁹⁰ is a lightweight tool that can be used to maintain configuration files. The most common
usage of the tool is keeping configuration files up-to-date using data stored in etcd, consul, and few
other data registries. It can also be used to reload applications when configuration files change. In
other words, we can use it as a way to reconfigure services with the information stored in etcd (or
few other registries).

Installing etcd is straightforward. The commands are as follows (please don’t run them yet).

1 wget https://github.com/kelseyhightower/confd/releases\

2 /download/v0.10.0/confd-0.10.0-linux-amd64

3

4 sudo mv confd-0.10.0-linux-amd64 /usr/local/bin/confd

5

6 sudo chmod 755 /usr/local/bin/confd

7

8 sudo mkdir -p /etc/confd/{conf.d,templates}

In order for confd to work, we need a configuration file located in the /etc/confd/conf.d/ directory
and a template in the /etc/confd/templates.

Example configuration file is as follows.

1 [template]

2 src = "nginx.conf.tmpl"

3 dest = "/tmp/nginx.conf"

4 keys = [

5 "/nginx/nginx"

6]

As a minimum, we need to specify template source, destination file, and keys that will be fetched
from the registry.

Templates use GoLang text templates⁹¹ format. An example template is as follows.

1 The address is {{getv "/nginx/nginx"}};

When this template is processed, it will substitute {{getv "/nginx/nginx"}} with the value from
the registry.

Finally, confd can be run in two modes. In the Daemon mode, it polls a registry and updates
destination configuration whenever relevant values change. The onetime mode is run once. An
example of the onetime mode is as follows (please do not run it yet).

⁹⁰https://github.com/kelseyhightower/confd
⁹¹http://golang.org/pkg/text/template/#pkg-overview

https://github.com/kelseyhightower/confd
http://golang.org/pkg/text/template/#pkg-overview
https://github.com/kelseyhightower/confd
http://golang.org/pkg/text/template/#pkg-overview

Service Discovery: The Key to Distributed Services 118

1 confd -onetime -backend etcd -node 10.100.197.202:2379

This command would run in the onetime mode, would use etcd as the backend running on the
specified node. When executed, destination configuration would be updated with values from the
etcd registry.

Now that we know basics of how confd works, let’s take a look at the Ansible role confd that will
make sure that it is installed on all servers in the cluster.

The roles/confd/tasks/main.yml⁹² file is as follows.

1 - name: Directories are created

2 file:

3 path: "{{ item }}"

4 state: directory

5 with_items: directories

6 tags: [confd]

7

8 - name: Files are copied

9 copy:

10 src: "{{ item.src }}"

11 dest: "{{ item.dest }}"

12 mode: "{{ item.mode }}"

13 with_items: files

14 tags: [confd]

This Ansible role is even simpler than the one we created for etcd since we are not even running
the binary. It makes sure that directories are created and that files are copied to the destination
servers. Since there are multiple directories and files involved, we defined them as variables in the
roles/confd/defaults/main.yml⁹³ file.

1 directories:

2 - /etc/confd/conf.d

3 - /etc/confd/templates

4

5 files: [

6 { src: 'example.toml', dest: '/etc/confd/conf.d/example.toml', mode: '0644' },

7 { src: 'example.conf.tmpl', dest: '/etc/confd/templates/example.conf.tmpl', mo\

8 de: '0644' },

9 { src: 'confd', dest: '/usr/local/bin/confd', mode: '0755' }

10]

⁹²https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/confd/tasks/main.yml
⁹³https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/confd/defaults/main.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/confd/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/confd/defaults/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/confd/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/confd/defaults/main.yml

Service Discovery: The Key to Distributed Services 119

We defined directories where we’ll put configurations and templates. We also defined files that need
to be copied; one binary, one configuration, and one template file that we’ll use to try out confd.

Finally, we need confd.yml⁹⁴ file that will act as the Ansible playbook.

1 - hosts: confd

2 remote_user: vagrant

3 serial: 1

4 sudo: yes

5 roles:

6 - common

7 - confd

There’s nothing new to discuss since this file is almost the same the other playbooks we worked
with.

With everything set up, we can deploy confd to all the cluster servers.

1 ansible-playbook \

2 /vagrant/ansible/confd.yml \

3 -i /vagrant/ansible/hosts/serv-disc

With confd installed on all nodes in the cluster, we can try it out.

Let’s run the nginx container again so that Registrator can put some data to etcd.

1 export DOCKER_HOST=tcp://serv-disc-01:2375

2

3 docker run -d --name nginx \

4 --env SERVICE_NAME=nginx \

5 --env SERVICE_ID=nginx \

6 -p 4321:80 \

7 nginx

8

9 confd -onetime -backend etcd -node 10.100.194.203:2379

We run the nginx container on the serv-disc-01 node and exposed the port 4321. Since Registrator
is already running on that server, it put data to etcd. Finally, we run the local instance of confd that
checked all its configuration files and compared keys with those stored in etcd. Since nginx/nginx
key has been changed in etcd, it processed the template and updated the destination config. That
can be seen from the output that should be similar to the following (timestamp has been removed
for brevity).

⁹⁴https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/confd.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/confd.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/confd.yml

Service Discovery: The Key to Distributed Services 120

1 cd confd[15241]: INFO Backend set to etcd

2 cd confd[15241]: INFO Starting confd

3 cd confd[15241]: INFO Backend nodes set to 10.100.194.203:2379

4 cd confd[15241]: INFO Target config /tmp/example.conf out of sync

5 cd confd[15241]: INFO Target config /tmp/example.conf has been updated

It found that the /tmp/example.conf is out of sync and updated it. Let us confirm that.

1 cat /tmp/example.conf

The output is as follows.

1 The address is 10.100.194.201:4321

If any of the changes in templates or etcd data is updated, running confd will make sure that all
destination configurations are updated accordingly.

Figure 8-8: Multiple nodes with Docker containers, etcd, Registrator and confd

Combining etcd, Registrator, and confd

When etcd, Registrator, and confd are combined, we get a simple yet powerful way to automate
all our service discovery and configuration needs. That will come in handy when we start working
on more advanced deployment strategies. The combination also demonstrates the effectiveness of
having the right mix of “small” tools. Those three do what we need them to do. Less than this and
we would not be able to accomplish the goals set in front of us. If, on the other hand, they were
designed with bigger scope in mind, we would introduce unnecessary complexity and overhead on
server resources and maintenance.

Before we make the final verdict, let’s take a look at another combination of tools with similar goals.
After all, we should never settle for some solution without investigating alternatives.

Service Discovery: The Key to Distributed Services 121

Consul

Consul⁹⁵ is strongly consistent datastore that uses gossip to form dynamic clusters. It features
hierarchical key/value store that can be used not only to store data but also to register watches
that can be used for a variety of tasks, from sending notifications about data changes, to running
health checks and custom commands depending on their output.

Unlike Zookeeper and etcd, Consul implements service discovery system embedded, so there is no
need to build your own or use a third-party one. This discovery includes, among other things, health
checks of nodes and services running on top of them.

ZooKeeper and etcd provide only a primitive K/V store and require that application developers
build their own system to provide service discovery. Consul, on the other hand, provides a built-in
framework for service discovery. Clients only need to register services and perform discovery using
the DNS or HTTP interface. The other two tools require either a hand-made solution or the usage
of third-party tools.

Consul offers out of the box native support for multiple data centers and the gossip system that
works not only with nodes in the same cluster but across data centers as well.

Consul has another nice feature that distinguishes it from the others. Not only that it can be used
to discover information about deployed services and nodes they reside on, but it also provides easy
to extend health checks through HTTP and TCP requests, TTLs (time-to-live), custom scripts and
even Docker commands.

Setting Up Consul

As before, we’ll start by exploring manual installation commands and, later on, automate them with
Ansible. We’ll configure it on the cd node as an exercise.

1 sudo apt-get install -y unzip

2

3 wget https://releases.hashicorp.com/consul/0.6.3/consul_0.6.3_linux_amd64.zip

4 wget https://releases.hashicorp.com/consul/0.6.0/consul_0.6.0_linux_amd64.zip

5

6 unzip consul_0.6.0_linux_amd64.zip

7

8 sudo mv consul /usr/local/bin/consul

9

10 rm -f consul_0.6.0_linux_amd64.zip

11

12 sudo mkdir -p /data/consul/{data,config,ui}

⁹⁵https://www.consul.io/

https://www.consul.io/
https://www.consul.io/

Service Discovery: The Key to Distributed Services 122

We started by installing unzip since it is not included in default Ubuntu distribution. Then we
downloaded the Consul ZIP, unpacked it, moved it to the /usr/local/bin directory, removed the
ZIP file since we won’t need it anymore and, finally, created few directories. Consul will place
its information to the data directory and configuration files into config.

We can also install Consul WEB UI that will give us an excellent visual presentation of Consul
features.

1 wget https://releases.hashicorp.com/consul/0.6.0/consul_0.6.0_web_ui.zip

2

3 unzip consul_0.6.0_web_ui.zip

4

5 sudo mv index.html static /data/consul/ui/

Since the Web UI consists of only static files, all we had to do is download, unpack and move the
files. We’ll take a look at the UI later on when we generate some data.

Next we can run Consul.

1 sudo consul agent \

2 -server \

3 -bootstrap-expect 1 \

4 -ui-dir /data/consul/ui \

5 -data-dir /data/consul/data \

6 -config-dir /data/consul/config \

7 -node=cd \

8 -bind=10.100.198.200 \

9 -client=0.0.0.0 \

10 >/tmp/consul.log &

Running Consul was very straight forward. We specified that it should run the agent as a server
and that there will be only one server instance (-bootstrap-expect 1). That is followed by locations of
key directories; ui, data and config. Then we specified the name of the node, address it will bind to
and which client can connect to it (0.0.0.0 refers to all). Finally, we redirected the output and made
sure that it’s running in the background (&).

Let’s verify that Consul started correctly.

1 cat /tmp/consul.log

The output of the log file should be similar to the following (timestamps are removed for brevity).

Service Discovery: The Key to Distributed Services 123

1 ==> Starting Consul agent...

2 ==> Starting Consul agent RPC...

3 ==> Consul agent running!

4 Node name: 'cd'

5 Datacenter: 'dc1'

6 Server: true (bootstrap: true)

7 Client Addr: 0.0.0.0 (HTTP: 8500, HTTPS: -1, DNS: 8600, RPC: 8400)

8 Cluster Addr: 10.100.198.200 (LAN: 8301, WAN: 8302)

9 Gossip encrypt: false, RPC-TLS: false, TLS-Incoming: false

10 Atlas: <disabled>

11

12 ==> Log data will now stream in as it occurs:

13

14 [INFO] serf: EventMemberJoin: cd 10.100.198.200

15 [INFO] serf: EventMemberJoin: cd.dc1 10.100.198.200

16 [INFO] raft: Node at 10.100.198.200:8300 [Follower] entering Follower state

17 [WARN] serf: Failed to re-join any previously known node

18 [INFO] consul: adding LAN server cd (Addr: 10.100.198.200:8300) (DC: dc1)

19 [WARN] serf: Failed to re-join any previously known node

20 [INFO] consul: adding WAN server cd.dc1 (Addr: 10.100.198.200:8300) (DC: dc1)

21 [ERR] agent: failed to sync remote state: No cluster leader

22 [WARN] raft: Heartbeat timeout reached, starting election

23 [INFO] raft: Node at 10.100.198.200:8300 [Candidate] entering Candidate state

24 [INFO] raft: Election won. Tally: 1

25 [INFO] raft: Node at 10.100.198.200:8300 [Leader] entering Leader state

26 [INFO] consul: cluster leadership acquired

27 [INFO] consul: New leader elected: cd

28 [INFO] raft: Disabling EnableSingleNode (bootstrap)

We can see that the Consul agent we run in server mode elected itself as the leader (which is to be
expected since it’s the only one).

With Consul up and running, let’s see how we can put some data into it.

1 curl -X PUT -d 'this is a test' \

2 http://localhost:8500/v1/kv/msg1

3

4 curl -X PUT -d 'this is another test' \

5 http://localhost:8500/v1/kv/messages/msg2

6

7 curl -X PUT -d 'this is a test with flags' \

8 http://localhost:8500/v1/kv/messages/msg3?flags=1234

Service Discovery: The Key to Distributed Services 124

The first command created the msg1 key with the value this is a test. The second had nested the
key msg2 into a parent keymessages. Finally, the last command added the flag with the value 1234.
Flags can be used to store version number or any other information that can be expressed as an
integer.

Let’s take a look how to retrieve the information we just stored.

1 curl http://localhost:8500/v1/kv/?recurse \

2 | jq '.'

The output of the command is as follows (order is not guaranteed).

1 [

2 {

3 "CreateIndex": 141,

4 "Flags": 0,

5 "Key": "messages/msg2",

6 "LockIndex": 0,

7 "ModifyIndex": 141,

8 "Value": "dGhpcyBpcyBhbm90aGVyIHRlc3Q="

9 },

10 {

11 "CreateIndex": 142,

12 "Flags": 1234,

13 "Key": "messages/msg3",

14 "LockIndex": 0,

15 "ModifyIndex": 147,

16 "Value": "dGhpcyBpcyBhIHRlc3Qgd2l0aCBmbGFncw=="

17 },

18 {

19 "CreateIndex": 140,

20 "Flags": 0,

21 "Key": "msg1",

22 "LockIndex": 0,

23 "ModifyIndex": 140,

24 "Value": "dGhpcyBpcyBhIHRlc3Q="

25 }

26]

Since we used the recurse query, keys were returned from the root recursively.

Here we can see all the keys we inserted. However, the value is base64 encoded. Consul can store
more than “text” and, in fact, it stores everything as binary under the hood. Since not everything
can be represented as text, you can store anything in Consul’s K/V, but there are size limitations.

We can also retrieve a single key.

Service Discovery: The Key to Distributed Services 125

1 curl http://localhost:8500/v1/kv/msg1 \

2 | jq '.'

The output is the same as before but limited to the key msg1.

1 [

2 {

3 "CreateIndex": 140,

4 "Flags": 0,

5 "Key": "msg1",

6 "LockIndex": 0,

7 "ModifyIndex": 140,

8 "Value": "dGhpcyBpcyBhIHRlc3Q="

9 }

10]

Finally, we can request only the value.

1 curl http://localhost:8500/v1/kv/msg1?raw

This time, we put the raw query parameter and the result is only the value of the requested key.

1 this is a test

As you might have guessed, Consul keys can easily be deleted. The command to, for example, delete
the messages/msg2 key is as follows.

1 curl -X DELETE http://localhost:8500/v1/kv/messages/msg2

We can also delete recursively.

1 curl -X DELETE http://localhost:8500/v1/kv/?recurse

The Consul agent we deployed was set up to be the server. However, most agents do not need to
run in the server mode. Depending on the number of nodes, we might opt for three Consul agents
running in the server mode and many non-server agents joining it. If, on the other hand, the number
of nodes is indeed big, we might increase the number of agents running in the server mode to five. If
only one server is running, there will be data loss in case of its failure. In our case, since the cluster
consists of only three nodes and this is a demo environment, one Consul agent running in the server
mode is more than enough.

The command to run an agent on the serv-disc-02 node and make it join the cluster is as follows
(please don’t run it yet).

Service Discovery: The Key to Distributed Services 126

1 sudo consul agent \

2 -ui-dir /data/consul/ui \

3 -data-dir /data/consul/data \

4 -config-dir /data/consul/config \

5 -node=serv-disc-02 \

6 -bind=10.100.197.202 \

7 -client=0.0.0.0 \

8 >/tmp/consul.log &

The only difference we did when compared with the previous execution is the removal of arguments
-server and -bootstrap-expect 1. However, running Consul in one of the cluster servers is not enough.
We need to join it with the Consul agent running on the other server. The command to accomplish
that is as follows (please don’t run it yet).

1 consul join 10.100.198.200

The effect of running this command is that agents of both servers would be clustered and data
synchronized between them. If we continued adding Consul agents to other servers and joining
them, the effect would be an increased number of cluster nodes registered in Consul. There is no
need to join more than one agent since Consul uses a gossip protocol to manage membership and
broadcast messages to the cluster. That is one of the useful improvements when compared to etcd
that requires us to specify the list of all servers in the cluster. Managing such a list tends to be more
complicated when the number of servers increases. With the gossip protocol, Consul is capable of
discovering nodes in the cluster without us telling it where they are.

With Consul basics covered, let’s see how we can automate its configuration across all servers in
the cluster. Since we are already committed to Ansible, we’ll create a new role for Consul. While
the configuration we’re about to explore is very similar to those we did by now, there are few new
details we have not yet seen.

The first two tasks from the Ansible role roles/consul/tasks/main.yml⁹⁶ are as follows.

1 - name: Directories are created

2 file:

3 path: "{{ item }}"

4 state: directory

5 with_items: directories

6 tags: [consul]

7

8 - name: Files are copied

9 copy:

⁹⁶https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/tasks/main.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/tasks/main.yml

Service Discovery: The Key to Distributed Services 127

10 src: "{{ item.src }}"

11 dest: "{{ item.dest }}"

12 mode: "{{ item.mode }}"

13 with_items: files

14 tags: [consul]

We started by creating directories and copying files. Both tasks use variables array specified in the
with_items tag.

Let’s take a look at those variables. They are defined in the roles/consul/defaults/main.yml⁹⁷.

1 logs_dir: /data/consul/logs

2

3 directories:

4 - /data/consul/data

5 - /data/consul/config

6 - "{{ logs_dir }}"

7

8 files: [

9 { src: 'consul', dest: '/usr/local/bin/consul', mode: '0755' },

10 { src: 'ui', dest: '/data/consul', mode: '0644' }

11]

Even thoughwe could specify all those variables inside the roles/consul/tasks/main.yml⁹⁸ file, having
them separated allows us to change their values more easily. In this case, have a simple list of
directories and the list of files in JSON format with source, destination and mode.

Let’s continue with the tasks in the roles/consul/tasks/main.yml⁹⁹. The third one is as follows.

1 - name: Is running

2 shell: "nohup consul agent {{ consul_extra }} \

3 -ui-dir /data/consul/ui \

4 -data-dir /data/consul/data \

5 -config-dir /data/consul/config \

6 -node={{ ansible_hostname }} \

7 -bind={{ ip }} \

8 -client=0.0.0.0 \

9 >{{ logs_dir }}/consul.log 2>&1 &"

10 tags: [consul]

⁹⁷https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/defaults/main.yml
⁹⁸https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/tasks/main.yml
⁹⁹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/tasks/main.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/defaults/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/defaults/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/tasks/main.yml

Service Discovery: The Key to Distributed Services 128

Since Consul makes sure that there is only one process running at the time, there is no danger
running this task multiple times. It is equivalent to the command we run manually with an addition
of a few variables.

If you remember the manual execution of Consul, one node should run Consul in the server node
and the rest should join at least one node so that Consul can gossip that information to the whole
cluster. We defined those differences as the (consul_extra) variable. Unlike those we used before that
are defined in roles/consul/defaults/main.yml¹⁰⁰ file inside the role, consul_extra is defined in the
hosts/serv-disc¹⁰¹ inventory file. Let’s take a look at it.

1 [consul]

2 10.100.194.201 consul_extra="-server -bootstrap -ui-dir /ui"

3 10.100.194.20[2:3] consul_server_ip="10.100.194.201"

We defined variables to the right of the server IPs. In this case, the .201 is acting as a server. The rest
is defining the consul_server_ip variables that we’ll discuss very soon.

Let’s jump into the fourth (and last) task defined in the roles/consul/tasks/main.yml¹⁰² file.

1 - name: Has joined

2 shell: consul join {{ consul_server_ip }}

3 when: consul_server_ip is defined

4 tags: [consul]

This task makes sure that every Consul agent, except the one running in the server mode, joins the
cluster. The task runs the same command like the one we executed manually, with the addition of
the consul_server_ip variable that has a double usage. The first usage is to provide value for the shell
command. The second usage is to decide whether this task is run at all. We accomplished that using
the when: consul_server_ip is defined definition.

Finally, we have the consul.yml¹⁰³ playbook, that is as follows.

¹⁰⁰https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/defaults/main.yml
¹⁰¹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/serv-disc
¹⁰²https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/tasks/main.yml
¹⁰³https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/consul.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/defaults/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/serv-disc
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/consul.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/defaults/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/serv-disc
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/consul.yml

Service Discovery: The Key to Distributed Services 129

1 - hosts: consul

2 remote_user: vagrant

3 serial: 1

4 sudo: yes

5 roles:

6 - common

7 - consul

There’s not much to say about it since it follows the same structure as the playbooks we used before.

Now that we have the playbook, let us execute it and take a look at Consul nodes.

1 ansible-playbook \

2 /vagrant/ansible/consul.yml \

3 -i /vagrant/ansible/hosts/serv-disc

We can confirm whether Consul is indeed running on all nodes by sending the nodes request to one
of its agents.

1 curl serv-disc-01:8500/v1/catalog/nodes \

2 | jq '.'

The output of the command is as follows.

1 [

2 {

3 "Address": "10.100.194.201",

4 "Node": "serv-disc-01"

5 },

6 {

7 "Address": "10.100.194.202",

8 "Node": "serv-disc-02"

9 },

10 {

11 "Address": "10.100.194.203",

12 "Node": "serv-disc-03"

13 }

14]

All three nodes in the cluster are now running Consul. With that out of the way, we can move back
to Registrator and see how it behaves when combined with Consul.

Service Discovery: The Key to Distributed Services 130

Figure 8-9: Multiple nodes with Docker containers and Consul

Setting Up Registrator

Registrator¹⁰⁴ has two Consul protocols. We’ll take a look at consulkv first since its results should be
very similar to those obtained with the etcd protocol.

1 export DOCKER_HOST=tcp://serv-disc-01:2375

2

3 docker run -d --name registrator-consul-kv \

4 -v /var/run/docker.sock:/tmp/docker.sock \

5 -h serv-disc-01 \

6 gliderlabs/registrator \

7 -ip 10.100.194.201 consulkv://10.100.194.201:8500/services

Let’s take a look at the Registrator log and check whether everything seems to be working correctly.

1 docker logs registrator-consul-kv

The output should be similar to the following (timestamps were removed for brevity).

¹⁰⁴https://github.com/gliderlabs/registrator

https://github.com/gliderlabs/registrator
https://github.com/gliderlabs/registrator

Service Discovery: The Key to Distributed Services 131

1 Starting registrator v6 ...

2 Forcing host IP to 10.100.194.201

3 consulkv: current leader 10.100.194.201:8300

4 Using consulkv adapter: consulkv://10.100.194.201:8500/services

5 Listening for Docker events ...

6 Syncing services on 1 containers

7 ignored: 19c952849ac2 no published ports

8 ignored: 46267b399098 port 443 not published on host

9 added: 46267b399098 nginx

The result is the same as whenwe run Registrator with the etcd protocol. It found the nginx container
running (the one that we started previously while practicing etcd) and published the exposed port
4321 to Consul. We can confirm that by querying Consul.

1 curl http://serv-disc-01:8500/v1/kv/services/nginx/nginx?raw

As expected, the output is the IP and the port exposed through the nginx container.

1 10.100.194.201:4321

However, Registrator has another protocol called consul (the one we just used is consulkv) that
utilizes Consul’s format for storing service information.

1 docker run -d --name registrator-consul \

2 -v /var/run/docker.sock:/tmp/docker.sock \

3 -h serv-disc-01 \

4 gliderlabs/registrator \

5 -ip 10.100.194.201 consul://10.100.194.201:8500

Let’s see what information Registrator sent to Consul this time.

1 curl http://serv-disc-01:8500/v1/catalog/service/nginx | jq '.'

This time, the data is a bit more complete yet still in a very simple format.

Service Discovery: The Key to Distributed Services 132

1 [

2 {

3 "ModifyIndex": 185,

4 "CreateIndex": 185,

5 "Node": "serv-disc-01",

6 "Address": "10.100.194.201",

7 "ServiceID": "nginx",

8 "ServiceName": "nginx",

9 "ServiceTags": [],

10 "ServiceAddress": "10.100.194.201",

11 "ServicePort": 4321,

12 "ServiceEnableTagOverride": false

13 }

14]

Besides the IP and the port that is normally stored with etcd or consulkv protocols, this time, we got
more information. We know the node the service is running on, service ID and the name. We can
do even better than that with few additional environment variables. Let’s bring up another nginx
container and see the data stored in Consul.

1 docker run -d --name nginx2 \

2 --env "SERVICE_ID=nginx2" \

3 --env "SERVICE_NAME=nginx" \

4 --env "SERVICE_TAGS=balancer,proxy,www" \

5 -p 1111:80 \

6 nginx

7

8 curl http://serv-disc-01:8500/v1/catalog/service/nginx | jq '.'

The output of the last command is as follows.

1 [

2 {

3 "ModifyIndex": 185,

4 "CreateIndex": 185,

5 "Node": "serv-disc-01",

6 "Address": "10.100.194.201",

7 "ServiceID": "nginx",

8 "ServiceName": "nginx",

9 "ServiceTags": [],

10 "ServiceAddress": "10.100.194.201",

11 "ServicePort": 4321,

Service Discovery: The Key to Distributed Services 133

12 "ServiceEnableTagOverride": false

13 },

14 {

15 "ModifyIndex": 202,

16 "CreateIndex": 202,

17 "Node": "serv-disc-01",

18 "Address": "10.100.194.201",

19 "ServiceID": "nginx2",

20 "ServiceName": "nginx",

21 "ServiceTags": [

22 "balancer",

23 "proxy",

24 "www"

25],

26 "ServiceAddress": "10.100.194.201",

27 "ServicePort": 1111,

28 "ServiceEnableTagOverride": false

29 }

30]

The second container (nginx2) was registered and, this time, Consul got tags that we might find
useful later on. Since both containers are listed under the same name Consul considers them to be
two instances of the same service.

Now that we know how Registrator works in conjunction with Consul, let’s configure it in all nodes
of the cluster. The good news is that the role is already created, and we set the protocol to be defined
with the variable protocol. We also put the name of the container as the registrator_name variable
so that we can bring the Registrator container with the consul protocol without getting in conflict
with the etcd one we configured earlier.

The playbook registrator.yml¹⁰⁵ is as follows.

1 - hosts: registrator

2 remote_user: vagrant

3 serial: 1

4 sudo: yes

5 vars:

6 - registrator_name: registrator-consul

7 roles:

8 - docker

9 - consul

10 - registrator

¹⁰⁵https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/registrator.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/registrator.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/registrator.yml

Service Discovery: The Key to Distributed Services 134

The registrator-etcd.yml¹⁰⁶ has the registrator_protocol variable set to etcd and registrator_port to
2379. We didn’t need it in this case since we already had default values set to consul and 8500 in the
roles/registrator/defaults/main.yml¹⁰⁷ file. On the other hand, we did overwrite the default value of
the registrator_name.

With everything ready, we can run the playbook.

1 ansible-playbook \

2 /vagrant/ansible/registrator.yml \

3 -i /vagrant/ansible/hosts/serv-disc

Once the execution of this playbook is finished, Registrator with the consul protocol will be
configured on all nodes in the cluster.

Figure 8-10: Multiple nodes with Docker containers, Consul and Registrator

How about templating? Should we use confd or something else?

Setting Up Consul Template

We can use confd with Consul in the same way as we used it with etcd. However, Consul has its
own templating service with features more in line with what Consul offers.

Consul Template¹⁰⁸ is a very convenient way to create files with values obtained from Consul. As a
bonus, it can also run arbitrary commands after the files have been updated. Just as confd, Consul
Template also uses Go Template¹⁰⁹ format.

By now, you’re probably accustomed to the routine. First we’ll try Consul Template manually.
As with all other tools, we set up in this chapter, installation consists of downloading the release,
unpacking it and making sure that the executable is in the system path.

¹⁰⁶https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/registrator-etcd.yml
¹⁰⁷https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/registrator/defaults/main.yml
¹⁰⁸https://github.com/hashicorp/consul-template
¹⁰⁹http://golang.org/pkg/text/template/

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/registrator-etcd.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/registrator/defaults/main.yml
https://github.com/hashicorp/consul-template
http://golang.org/pkg/text/template/
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/registrator-etcd.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/registrator/defaults/main.yml
https://github.com/hashicorp/consul-template
http://golang.org/pkg/text/template/

Service Discovery: The Key to Distributed Services 135

1 wget https://releases.hashicorp.com/consul-template/0.12.0/\

2 consul-template_0.12.0_linux_amd64.zip

3

4 sudo apt-get install -y unzip

5

6 unzip consul-template_0.12.0_linux_amd64.zip

7

8 sudo mv consul-template /usr/local/bin

9

10 rm -rf consul-template_0.12.0_linux_amd64*

With Consul Template available on the node, we should create one template.

1 echo '

2 {{range service "nginx"}}

3 The address is {{.Address}}:{{.Port}}

4 {{end}}

5 ' >/tmp/nginx.ctmpl

When this template is processed, it will iterate (range) over all services with the name nginx.
Each iteration will produce the text with service Address and Port. Template has been created as
/tmp/nginx.ctmpl.

Before we run the Consul Template, let’s take another look at what we have stored in Consul for the
nginx services.

1 curl http://serv-disc-01:8500/v1/catalog/service/nginx | jq '.'

The output is as follows.

1 [

2 {

3 "ModifyIndex": 185,

4 "CreateIndex": 185,

5 "Node": "serv-disc-01",

6 "Address": "10.100.194.201",

7 "ServiceID": "nginx",

8 "ServiceName": "nginx",

9 "ServiceTags": [],

10 "ServiceAddress": "10.100.194.201",

11 "ServicePort": 4321,

12 "ServiceEnableTagOverride": false

Service Discovery: The Key to Distributed Services 136

13 },

14 {

15 "ModifyIndex": 202,

16 "CreateIndex": 202,

17 "Node": "serv-disc-01",

18 "Address": "10.100.194.201",

19 "ServiceID": "nginx2",

20 "ServiceName": "nginx",

21 "ServiceTags": [

22 "balancer",

23 "proxy",

24 "www"

25],

26 "ServiceAddress": "10.100.194.201",

27 "ServicePort": 1111,

28 "ServiceEnableTagOverride": false

29 }

30]

We have two nginx services up and running and registered in Consul. Let’s see the result of applying
the template we created.

1 consul-template \

2 -consul serv-disc-01:8500 \

3 -template "/tmp/nginx.ctmpl:/tmp/nginx.conf" \

4 -once

5

6 cat /tmp/nginx.conf

The result of the second command is as follows.

1 The address is 10.100.194.201:4321

2

3 The address is 10.100.194.201:1111

The Consul Template command we executed found both services and generated the output in the
format we specified. We specified that it should run only once. The alternative is to run it in
daemon mode. In such a case, it would monitor the registry for changes and apply them to specified
configuration files.

We will go into details of how Consul Template works later on when we start using it in our
deployment pipeline. Until then, please consult Consul documentation¹¹⁰ yourself. For now, it is

¹¹⁰https://github.com/hashicorp/consul-template

https://github.com/hashicorp/consul-template
https://github.com/hashicorp/consul-template

Service Discovery: The Key to Distributed Services 137

important to understand that it can obtain any information stored in Consul and apply it to the
template we specify. Besides creating the file, it can also run custom commands. That will come in
handy with reverse proxy, that is the subject of our next chapter.

We didn’t try Consul Template applied to Consul’s key/value format. In that combination, there is
no significant difference when compared to confd.

The major downside Consul Template has is its tight coupling with Consul. Unlike confd that can
be used with many different registries, Consul Template is created as a templating engine tightly
integrated with Consul. That is, at the same time, an advantage, since it understands Consul’s service
format. If you choose to use Consul, Consul Template is a great fit.

Before we move on to the next subject, let’s create Consul Template role and configure it on all
nodes. The roles/consul-template/tasks/main.yml¹¹¹ file is as follows.

1 - name: Directory is created

2 file:

3 path: /data/consul-template

4 state: directory

5 tags: [consul-template]

6

7 - name: File is copied

8 copy:

9 src: consul-template

10 dest: /usr/local/bin/consul-template

11 mode: 0755

12 tags: [consul-template]

There’s nothing exciting with this role. It’s probably the simplest one we did by now. The same holds
true for the consul-template.yml¹¹² playbook.

1 - hosts: consul-template

2 remote_user: vagrant

3 serial: 1

4 sudo: yes

5 roles:

6 - common

7 - consul-template

And, finally, we can configure it on all nodes.

¹¹¹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-template/tasks/main.yml
¹¹²https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/consul-template.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-template/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/consul-template.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-template/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/consul-template.yml

Service Discovery: The Key to Distributed Services 138

1 ansible-playbook \

2 /vagrant/ansible/consul-template.yml \

3 -i /vagrant/ansible/hosts/serv-disc

The end result is very similar to the etcd/Registrator combination with the difference in data format
sent to Consul.

Figure 8-11: Multiple nodes with Docker containers, Consul, Registrator and Consul Template

Up to this point, we covered Consul’s features that are, somewhat, similar to the etcd/registrator/-
confd combination. It’s time to take a look at the characteristics that make Consul indeed stand up
from the crowd.

Consul Health Checks, Web UI, and Data Centers

Monitoring health of cluster nodes and services is as important as testing and deployment itself.
While we should aim towards having stable environments that never fail, we should also acknowl-
edge that unexpected failures happen and be prepared to act accordingly. We can, for example,
monitor memory usage and, if it reaches a certain threshold, move some services to a different node
in the cluster. That would be an example of preventive actions performed before the “disaster” would
happen. On the other hand, not all potential failures can be detected in time for us to act on time. A
single service can fail. A whole node can stop working due to a hardware failure. In such cases, we
should be prepared to act as fast as possible by, for example, replacing a node with a new one and
moving failed services. We won’t go into details how Consul can help us in this task since there is
a whole chapter dedicated to self-healing systems and Consul will play a major role in it. For now,
suffice to say that Consul has a simple, elegant and, yet, powerful way to perform health checks that
can help us define what actions should be performed when health thresholds are reached.

If you googled “etcd ui” or “etcd dashboard” you probably saw that there are a few solutions
available, and you might be asking why we haven’t presented them. The reason is simple; etcd

Service Discovery: The Key to Distributed Services 139

is a key/value store and not much more. Having a UI to present data is not of much use since we
can easily obtain it through the etcdctl. That does not mean that etcd UI is of no use but that it does
not make much difference due to its limited scope.

Consul is muchmore than a simple key/value store. As we’ve already seen, besides storing key/value
pairs, it has a notion of a service togetherwith data that belong to it. It can also perform health checks,
thus becoming a good candidate for a dashboard that can be used to see the status of our nodes and
services running on top of them. Finally, it understands the concept of multiple data centers. All
those features combined, let us see the need for a dashboard in a different light.

Consul Web UI comes at no configuration cost since all that’s required is to specify the directory we
copied static files through the -ui-dir argument when starting Consul. We already did that when we
configured Consul through the Ansible playbook.x

With the Consul Web UI, we can view all services and nodes, monitor health checks and their
statuses, read and set key/value data as well as switch from one data center to another. To see it in
action, please open http://10.100.194.201:8500¹¹³ in your favorite browser. You’ll see items in the top
menu that correspond to the steps we performed earlier through the API.

The Services menu item lists all the services we registered. There’s not much at the moment since
only Consul server, Docker UI and two instances of the nginx service are up and running. We can
filter them by name or status and see details by clicking on one of the registered services.

¹¹³http://10.100.194.201:8500

http://10.100.194.201:8500
http://10.100.194.201:8500

Service Discovery: The Key to Distributed Services 140

Figure 8-12: Consul Web UI services

Nodes show us the list of all nodes belonging to the selected data center. In our case, we have three
nodes. The first one has three registered services.

Service Discovery: The Key to Distributed Services 141

Figure 8-13: Consul Web UI nodes

The Key/Value screen can be used to both display and modify data. In it, you can see data put to
Consul by the Registrator instance set to use consulkv as the protocol. Please feel free to add data
yourself and see how they are visualized in the UI. Besides working with Consul key/value data
with the API we used before, you can also manage them through the UI.

Service Discovery: The Key to Distributed Services 142

Figure 8-14: Consul Web UI key/value

Please note that Consul allows us to group nodes into data centers. We haven’t used this feature
since we are running only three nodes. When nodes in the cluster start increasing, splitting them
into data centers is often a good idea and Consul helps us to visualize them through its UI.

Combining Consul, Registrator, Template, Health Checks and WEB
UI

Consul, together with the tools we explored, is in many cases a better solution than what etcd
offers. It was designed with services architecture and discovery in mind. It is simple, yet powerful.
It provides a complete solution without sacrificing simplicity and, in many cases, it is the best tool
for service discovery and health checking needs (at least among those we evaluated).

Service Discovery Tools Compared

All of the tools are based on similar principles and architecture. They run on nodes, require a quorum
to operate and are strongly consistent. They all provide some form of key/value storage.

Zookeeper is the oldest of the three, and the age shows in its complexity, utilization of resources
and goals it’s trying to accomplish. It was designed in a different age than the rest of the tools we
evaluated (even though it’s not much older).

etcd with Registrator and confd is a very simple, yet very powerful combination that can solve most,
if not all, of our service discovery needs. It showcases the power we can obtain when we combine
simple and very specific tools. Each of them performs a very specific task, communicates through
well-established API and is capable of working with relative autonomy. They aremicroservices both
in their architectural as well as their functional approach.

Service Discovery: The Key to Distributed Services 143

What distinguishes Consul is the support for multiple data centers and health checking without the
usage of third-party tools. That does not mean that the usage of third-party tools is wrong. Actually,
throughout this book we are trying to combine different tools by choosing those that are performing
better than others without introducing unnecessary features overhead. The best results are obtained
when we use right tools for the job. If the tool does more than the job we require, its efficiency
drops. On the other hand, a tool that doesn’t do what we need it to do is useless. Consul strikes the
right balance. It does very few things, and it does them well.

The way Consul uses the gossip protocol to propagate knowledge about the cluster makes it easier
to set up than etcd, especially in the case of a big data center. The ability to store data as a service
makes it more complete and useful than key/value storage used in etcd (even though Consul has that
option as well). While we could accomplish the same by inserting multiple keys in etcd, Consul’s
service achieves a more compact result that often requires a single query to retrieve all the data
related to the service. On top of that, Registrator has quite a good implementation of the Consul
protocol making the two an excellent combination, especially when Consul Template is added to
this mixture. Consul’s Web UI is like a cherry on top of a cake and provides a good way to visualize
your services and their health.

I can’t say that Consul is a clear winner. Instead, it has a slight edge when compared with etcd.
Service discovery as a concept, as well as the tools we can use, is so new that we can expect a lot of
changes in this field. By the time you read this book, it’s likely that new tools will come, or those we
evaluated will change enough that some of the exercises we did will become obsolete. Have an open
mind and try to take bits of advice from this chapter with a grain of salt. The logic we employed is
solid and is not likely to change anytime soon. The same can not be said for tools. They are bound
to evolve rapidly soon.

We are left with one more subject before we can get back to our deployment procedure. The
integration step will require that we go through reverse proxy.

Before wemove on, let’s destroy the virtual machines we created for the purpose of service discovery
practice and free some resources for the next chapter.

1 exit

2

3 vagrant destroy -f

Proxy Services
We reached the point where we need something that will tie together the containers we’re deploying.
We need to simplify the access to the services and unify all the servers and ports our containers are
(or will be) deployed on. Multiple solutions are trying to solve this problem, with Enterprise Service
Bus (ESB) products being most commonly used. That is not to say that their only goal is redirection
towards destination services. It indeed isn’t, and that is one of the reasons we rejected ESB as (part
of) the solution for our architecture. The significant difference in the approach is that ESBs tend to
do a lot (much more than we need) while we are trying to compose our system by using very specific
small components or services that do (almost) exactly what we need. Not more, not less. ESBs are
an antithesis of microservices and, in a way, are betraying the initial ideas behind service-oriented
architecture. With us being committed to microservices and looking for more concrete solutions,
the alternative is a proxy service. It stands to reason that we should dedicate a bit more time
discussing what proxy services are and which products might be able to help us in our architecture
and processes.

A proxy service is a service that acts as an intermediary between clients performing requests and
services that serve those requests. A client sends a request to the proxy service that, in turn, redirects
that request to the destination service thus simplifying and controlling complexity laying behind the
architecture where the services reside.

There are at least three different types of proxy services.

• A gateway or tunneling service is the kind of a proxy service that redirect requests to the
destination services and responses back to the clients that made those requests.

• A forward proxy is used for retrieving data from different (mostly internet) sources.
• A reverse proxy is usually used to control and protect access to a server or services on a
private network. Besides its primary function, a reverse proxy often also performs tasks such
as load-balancing, decryption, caching and authentication.

A reverse proxy is probably the best solution for the problem at hand, so we’ll spend a bit more time
trying to understand it better.

Reverse Proxy Service

The main purpose of the proxy service is to hide the rest of the services as well as to redirect requests
to their final destination. The same holds true for responses. Once a service responds to a request,
that response goes back to the proxy service and from there is redirected to the client that initially

144

Proxy Services 145

requested it. For all purposes, from the point of view of the destination service, the request came
from the proxy. In other words, neither the client that generates the request knows what is behind
the proxy nor the service responding to the request knows that it originated from beyond the proxy.
In other words, both clients and services know only about the existence of the proxy service.

We’ll concentrate on usages of a proxy service in the context of an architecture based on (mi-
cro)services. However, most of the concepts are the same if a proxy service would be used on whole
servers (except that it would be called proxy server).

Some of the main purposes of a proxy services (beyond orchestration of requests and responses) are
as follows.

• While almost any applications server can provide encryption (most commonly Secure Sockets
Layer (SSL)), it is often easier to let the “middle man” be in charge of it.

• Load balancing is the process when, in this case, proxy service balances loads between
multiple instances of the same service. In most cases, those instances would be scaled
over multiple servers. With that combination (load balancing and scaling), especially when
architecture is based onmicroservices, we can quickly accomplish performance improvements
and avoid timeouts and downtimes.

• Compression is another candidate for a feature that is easily accomplished when centralized
in a single service. Main products that act as proxy services are very efficient in compression
and allow relatively easy setup. The primary reason for a compression of the traffic is a
speedup of the load time. The smaller the size, the faster the load.

• Caching is another one of the features that are easy to implement within a proxy service that
(in some cases) benefits from being centralized. By caching responses, we can offload part of
the work our services need to do. The gist of caching is that we set up the rules (for example,
cache requests related to the products listing) and cache timeouts. From there on, the proxy
service will send a request to the destination service only the first time and store the responses
internally. From there on, as long as the request is the same, it will be served directly by the
proxy without even sending the request to the service. That is, until the timeout is reached
and the process is repeated. The are much more complicated combinations we can employ,
but the most common usage is the one we described.

• Most proxy services serve as a single point of entry to the public APIs exposed through
services. That in itself increases security. In most cases only ports 80 (HTTP) and 443 (HTTPS)
would be available to the public usage. All other ports required by services should be open
only to the internal use.

• Different types of authentication (for exampleOAuth) can be implemented through the proxy
service. When the request does not have the user identification, the proxy service can be set to
return with an appropriate response code to the caller. On the other hand, when identification
is present, a proxy can choose to continue going to the destination and leave the verification
of that identification to the target service or perform it itself. Of course, many variations can
be used to implement the authentication. The crucial thing to note is that if a proxy is used,
it will most likely be involved in this process one way or another.

Proxy Services 146

This list is by no means extensive nor final but contains some of the most commonly used cases.
Many other combinations are possible involving both legal and illegal purposes. As an example, a
proxy is an indispensable tool for any hacker that wants to stay anonymous.

Throughout this books, we’ll focus mostly on its primary function; we’ll use proxy services to act
as proxies. They will be in charge of the orchestration of all traffic between microservices we’ll be
deploying. We’ll start with simple usages used in deployments and slowly progress towards more
complicated orchestration, namely blue-green deployment.

To some, it might sound that a proxy service deviates from microservices approach since it can do
(as is often the case) multiple things. However, when looking from the functional point of view, it
has a single purpose. It provides a bridge between the outside world and all the services we host
internally. At the same time, it tends to have a very low resource usage and can be handled with
only a few configuration files.

Equipped with the basic understanding about proxy services, the time has come to take a look at
some of the products we can use.

From now on, we’ll refer to reverse proxy as, simply, proxy.

How Can Proxy Service Help Our Project?

By now we managed to have a controlled way to deploy our services. Due to the nature of deploy-
ments we are trying to accomplish, those services should be deployed on ports and, potentially,
servers that are unknown to us in advance. Flexibility is the key to scalable architecture, fault
tolerance, and many other concepts we’ll explore further on. However, that flexibility comes at
a cost. We might not know in advance where will the services be deployed nor which ports they
are exposing. Even if this information would be available before the deployment, we should not
force users of our services to specify different ports and IPs when sending requests. The solution
is to centralize all communications both from third parties as well as from internal services at a
single point. The singular place that will be in charge of redirecting requests is a proxy service.
We’ll explore some of the tools that are at our disposal and compare their strengths and weaknesses.

As before, we’ll start by creating virtual machines that we’ll use to experiment with different proxy
services. We’ll recreate the cd node and use it to provision the proxy server with different proxy
services.

1 vagrant up cd proxy

The first tool we’ll explore is nginx.

Proxy Services 147

nginx

nginx¹¹⁴ (engine x) is an HTTP and reverse proxy server, a mail proxy server, and a generic TCP
proxy server. Igor Sysoev originally wrote it. In the beginning, it powered many Russian sites. Since
then, it become a server of choice for some of the busiest sites in the world (NetFlix, Wordpress, and
FastMail are only a few of the examples). According to Netcraft, nginx served or proxied around
23% of busiest sites¹¹⁵ in September 2015. That makes it second to Apache. While numbers provided
by Netcraft might be questionable, it is clear that nginx is highly popular and probably is closer to
the third place after Apache and IIS. Since everything we did by now is based on Linux, Microsoft
IIS should be discarded. That leaves us with Apache as a valid candidate to be our proxy service or
choice. Stands to reason that the two should be compared.

Apache¹¹⁶ has been available for many years and built a massive user base. Its huge popularity is
partly thanks to Tomcat¹¹⁷ that runs on top of Apache and is one of the most popular application
servers today. Tomcat is only one out of many examples of Apache’s flexibility. Through its modules,
it can be extended to process almost any programming language.

Being most popular does not necessarily makes something the best choice. Apache can slow down
to a crawl under a heavy load due to its design deficiencies. It spawns new processes that, in turn,
consume quite a lot of memory. On top of that, it creates new threads for all requests making them
compete with each others for access to CPU and memory. Finally, if it reaches the configurable limit
of processes, it just refuses new connections. Apache was not designed to serve as a proxy service.
That function is very much an after-thought.

nginx was created to address some of the problems Apache has, in particular, the C10K problem.
At the time, C10K was a challenge for web servers to begin handling ten thousand concurrent
connections. nginx was released in 2004 and met the goal of the challenge. Unlike Apache, its
architecture is based on asynchronous, non-blocking, event-driven architecture. Not only that it
beats Apache in the number of concurrent requests it can handle, but its resource usage was
much lower. It was born after Apache and designed from ground up as a solution for concurrency
problems. We got a server capable of handling more requests and a lower cost.

nginx’ downside is that it is designed to serve static content. If you need a server to serve content
generated by Java, PHP, and other dynamic languages, Apache is a better option. In our case, this
downside is of almost no importance since we are looking for a proxy service with the capability
to do load balancing and few more features. We will not be serving any content (static or dynamic)
directly by the proxy, but redirect requests to specialized services.

All in all, while Apache might be a good choice in a different setting, nginx is a clear winner for the
task we’re trying to accomplish. It will perform much better than Apache if its only task is to act
as a proxy and load balancing. It’s memory consumption will be minuscule and it will be capable

¹¹⁴http://nginx.org/
¹¹⁵http://news.netcraft.com/archives/2015/09/16/september-2015-web-server-survey.html
¹¹⁶http://httpd.apache.org/
¹¹⁷http://tomcat.apache.org/

http://nginx.org/
http://news.netcraft.com/archives/2015/09/16/september-2015-web-server-survey.html
http://httpd.apache.org/
http://tomcat.apache.org/
http://nginx.org/
http://news.netcraft.com/archives/2015/09/16/september-2015-web-server-survey.html
http://httpd.apache.org/
http://tomcat.apache.org/

Proxy Services 148

of handling a vast amount of concurrent requests. At least, that is the conclusion before we get to
other contestants for the proxy supremacy.

Setting Up nginx

Before we set up the nginx proxy service, let’s take a quick look at the Ansible files that we’re about
to run. The nginx.yml¹¹⁸ playbook is similar to those we used before. We’ll be running the roles we
already run before with the addition of nginx.

1 - hosts: proxy

2 remote_user: vagrant

3 serial: 1

4 sudo: yes

5 roles:

6 - common

7 - docker

8 - docker-compose

9 - consul

10 - registrator

11 - consul-template

12 - nginx

The roles/nginx/tasks/main.yml¹¹⁹ role also doesn’t contain anything extraordinary.

1 - name: Directories are present

2 file:

3 dest: "{{ item }}"

4 state: directory

5 with_items: directories

6 tags: [nginx]

7

8 - name: Container is running

9 docker:

10 image: nginx

11 name: nginx

12 state: running

13 ports: "{{ ports }}"

14 volumes: "{{ volumes }}"

15 tags: [nginx]

¹¹⁸https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/nginx.yml
¹¹⁹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/nginx/tasks/main.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/nginx.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/nginx/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/nginx.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/nginx/tasks/main.yml

Proxy Services 149

16

17 - name: Files are present

18 copy:

19 src: "{{ item.src }}"

20 dest: "{{ item.dest }}"

21 with_items: files

22 register: result

23 tags: [nginx]

24

25 - name: Container is reloaded

26 shell: docker kill -s HUP nginx

27 when: result|changed

28 tags: [nginx]

29

30 - name: Info is sent to Consul

31 uri:

32 url: http://localhost:8500/v1/kv/proxy/ip

33 method: PUT

34 body: "{{ ip }}"

35 ignore_errors: yes

36 tags: [nginx]

We are creating few directories, making sure that the nginx container is running, passing few
files and, if any of them changed, reloading nginx. Finally, we are putting the nginx IP to Consul
in case we need it for later. The only important thing to notice is the nginx configuration file
roles/nginx/files/services.conf¹²⁰.

1 log_format upstreamlog

2 '$remote_addr - $remote_user [$time_local] '

3 '"$request" $status $bytes_sent '

4 '"$http_referer" "$http_user_agent" "$gzip_ratio" '

5 '$upstream_addr';

6

7 server {

8 listen 80;

9 server_name _;

10

11 access_log /var/log/nginx/access.log upstreamlog;

12

13 include includes/*.conf;

14 }

¹²⁰https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/nginx/files/services.conf

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/nginx/files/services.conf
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/nginx/files/services.conf

Proxy Services 150

15

16 include upstreams/*.conf;

For the moment, you can ignore log formatting and jump to the server specification. We specified
that nginx should listen to the standard HTTP port 80 and accept requests sent to any server
(server_name _). Next are the include statements. Instead of specifying all the configuration in
one place, with includes we’ll be able to add configuration for each service separately. Thet, in turn,
will allow us to focus on one service at a time and make sure that the one we deploy is configured
correctly. Later on, we’ll explore in more depth which types of configurations go into each of those
includes.

Let’s run the nginx playbook and start “playing” with it. We’ll enter the cd node and execute the
playbook that will provision the proxy node.

1 vagrant ssh cd

2

3 ansible-playbook /vagrant/ansible/nginx.yml \

4 -i /vagrant/ansible/hosts/proxy

Living Without a Proxy

Before we see nginx in action, it might be worthwhile to take refresh our memory of the difficulties
we are facing without a proxy service. We’ll start by running the books-ms application.

1 wget https://raw.githubusercontent.com/vfarcic\

2 /books-ms/master/docker-compose.yml

3

4 export DOCKER_HOST=tcp://proxy:2375

5

6 docker-compose up -d app

7

8 docker-compose ps

9

10 curl http://proxy/api/v1/books

The output of the last command is as follows.

Proxy Services 151

1 <html>

2 <head><title>404 Not Found</title></head>

3 <body bgcolor="white">

4 <center><h1>404 Not Found</h1></center>

5 <hr><center>nginx/1.9.9</center>

6 </body>

7 </html>

Even though we run the application with docker-compose and confirmed the it is running on the
proxy node by executing docker-compose ps, we observed through curl that the service is not
accessible on the standard HTTP port 80 (there was a “404 Not Found” message served through
nginx). This result was to be expected since our service is running on a random port. Even if we
did specify the port (we already discussed why that is a bad idea), we could not expect users to
memorize a different port for each separately deployed service. Besides, we already have service
discovery with Consul in place.

1 curl http://10.100.193.200:8500/v1/catalog/service/books-ms | jq '.'

The output of the last command is as follows.

1 [

2 {

3 "ModifyIndex": 42,

4 "CreateIndex": 42,

5 "Node": "proxy",

6 "Address": "10.100.193.200",

7 "ServiceID": "proxy:vagrant_app_1:8080",

8 "ServiceName": "books-ms",

9 "ServiceTags": [],

10 "ServiceAddress": "10.100.193.200",

11 "ServicePort": 32768,

12 "ServiceEnableTagOverride": false

13 }

14]

We can also obtain the port by inspecting the container.

Proxy Services 152

1 PORT=$(docker inspect \

2 --format='{{(index (index .NetworkSettings.Ports "8080/tcp") 0).HostPort}}' \

3 vagrant_app_1)

4

5 echo $PORT

6

7 curl http://proxy:$PORT/api/v1/books | jq '.'

We inspected the container, applied formatting to retrieve only the port of the service and stored
that information in the PORT variable. Later on, we used that variable to make a proper request to
the service. As expected, this time, the result was correct. Since there is no data, the service returned
an empty JSON array (this time without the 404 error).

Be it as it may, while this operation was successful, it is even less acceptable one for our users. They
cannot be given access to our servers only so that they can query Consul or inspect containers to
obtain the information they need. Without a proxy, services are unreachable. They are running, but
no one can use them.

Figure 9-1: Services without proxy

Now that we felt the pain our users would feel without a proxy, let us configure nginx correctly.
We’ll start with manual configuration, and from there on, progress towards automated one.

Manually Configuring nginx

Do you remember the first includes statement in the nginx configuration? Let’s use it. We already
have the PORT variable, and all that we have to do is make sure that all requests coming to nginx
on port 80 and starting with the address /api/v1/books are redirected to the correct port. We can
accomplish that by running the following commands.

Proxy Services 153

1 echo "

2 location /api/v1/books {

3 proxy_pass http://10.100.193.200:$PORT/api/v1/books;

4 }

5 " | tee books-ms.conf

6

7 scp books-ms.conf \

8 proxy:/data/nginx/includes/books-ms.conf # pass: vagrant

9

10 docker kill -s HUP nginx

We created the books-ms.conf file that will proxy all requests for /api/v1/books to the correct IP
and port. The location statement will match all requests starting with /api/v1/books and proxy them
to the same address running on the specified IP and port. While IP was not necessary, it is a good
practice to use it since, in most cases, the proxy service will run on a separate server. Further on, we
used scp (secure copy) to transfer the file to the /data/nginx/includes/ directory in the proxy node.
Once the configuration was copied, all we had to do was reload nginx using kill -s HUP command.

Let’s see whether the change we just did works correctly.

1 curl -H 'Content-Type: application/json' -X PUT -d \

2 "{\"_id\": 1,

3 \"title\": \"My First Book\",

4 \"author\": \"John Doe\",

5 \"description\": \"Not a very good book\"}" \

6 http://proxy/api/v1/books | jq '.'

7

8 curl http://proxy/api/v1/books | jq '.'

We successfully made a PUT request that inserted a book to the database and queried the service
that returned that same book. Finally, we can make requests without worrying about the ports.

Are our problems solved? Only partly. We still need to figure out the way to make these updates
to the nginx configuration automatic. After all, if we’ll be deploying our microservices often, we
cannot rely on human operators to continuously monitor deployments and perform configuration
updates.

Proxy Services 154

Figure 9-2: Services with manual proxy

Automatically Configuring nginx

We already discussed service discovery tools and the nginx playbook we run earlier made sure
that Consul, Registrator, and Consul Template are properly configured on the proxy node. That
means that Registrator detected the service container we ran and stored that information to the
Consul registry. All that is left is to make a template, feed it to Consul Template that will output the
configuration file and reload nginx.

Let’s make the situation a bit more complicated and scale our service by running two instances.
Scaling with Docker Compose is relatively easy.

1 docker-compose scale app=2

2

3 docker-compose ps

The output of the latter command is as follows.

Proxy Services 155

1 Name Command State Ports

2 ---

3 vagrant_app_1 /run.sh Up 0.0.0.0:32768->8080/tcp

4 vagrant_app_2 /run.sh Up 0.0.0.0:32769->8080/tcp

5 vagrant_db_1 /entrypoint.sh mongod Up 27017/tcp

We can observe that there are two instances of our service, both using different random ports.
Concerning nginx, this means several things, most important being that we cannot proxy in the
same way as before. It would be pointless to run two instances of the service and redirect all requests
only to one of them. We need to combine proxy with load balancing.

We won’t go into all possible load balancing techniques. Instead, we’ll use the simplest one called
round robin that is used by nginx by default. Round robin means that the proxy will distribute
requests equally among all services. As before, things closely related to a project should be stored
in the repository together with the code and nginx configuration files and templates should not be
an exception.

Let us first take a look at the nginx-includes.conf¹²¹ configuration file.

1 location /api/v1/books {

2 proxy_pass http://books-ms/api/v1/books;

3 proxy_next_upstream error timeout invalid_header http_500;

4 }

This time, instead of specifying IP and port, we’re using books_ms. Obviously, that domain does
not exist. It is a way for us to tell nginx to proxy all requests from the location to an upstream.
Additionally, we also added proxy_next_upstream instruction. If an error, timeout, invalid header
or an error 500 is received as a service response, nginx will pass to the next upstream connection.

That is the moment when we can start using the second include statement from the main
configuration file. However, since we do not know the IPs and ports the service will use, the upstream
is the Consul Template file nginx-upstreams.ctmpl¹²².

1 upstream books-ms {

2 {{range service "books-ms" "any"}}

3 server {{.Address}}:{{.Port}};

4 {{end}}

5 }

What this means is that the upstream request books-ms we set as the proxy upstream will be load
balanced between all instances of the service and that data will be obtained from Consul. We’ll see
the result once we run Consul Template.

First things first. Let’s download the two files we just discussed.

¹²¹https://github.com/vfarcic/books-ms/blob/master/nginx-includes.conf
¹²²https://github.com/vfarcic/books-ms/blob/master/nginx-upstreams.ctmpl

https://github.com/vfarcic/books-ms/blob/master/nginx-includes.conf
https://github.com/vfarcic/books-ms/blob/master/nginx-upstreams.ctmpl
https://github.com/vfarcic/books-ms/blob/master/nginx-includes.conf
https://github.com/vfarcic/books-ms/blob/master/nginx-upstreams.ctmpl

Proxy Services 156

1 wget http://raw.githubusercontent.com/vfarcic\

2 /books-ms/master/nginx-includes.conf

3

4 wget http://raw.githubusercontent.com/vfarcic\

5 /books-ms/master/nginx-upstreams.ctmpl

Now that the proxy configuration and the upstream template are on the cd server, we should run
Consul Template.

1 consul-template \

2 -consul proxy:8500 \

3 -template "nginx-upstreams.ctmpl:nginx-upstreams.conf" \

4 -once

5

6 cat nginx-upstreams.conf

Consul Template took the downloaded template as the input and created the books-ms.conf
upstream configuration. The second command output the result that should look similar to the
following.

1 upstream books-ms {

2

3 server 10.100.193.200:32768;

4

5 server 10.100.193.200:32769;

6

7 }

Since we are running two instances of the same service, Consul template retrieved their IPs and
ports and put them in the format we specified in the books-ms.ctmpl template.

Please note that we could have passed the third argument to Consul Template, and it would run any
command we specify. We’ll use it later on throughout the book.

Now that all the configuration files are created, we should copy them to the proxy node and reload
nginx.

Proxy Services 157

1 scp nginx-includes.conf \

2 proxy:/data/nginx/includes/books-ms.conf # Pass: vagrant

3

4 scp nginx-upstreams.conf \

5 proxy:/data/nginx/upstreams/books-ms.conf # Pass: vagrant

6

7 docker kill -s HUP nginx

All that’s left is to double check that proxy works and is balancing requests among those two
instances.

1 curl http://proxy/api/v1/books | jq '.'

2

3 curl http://proxy/api/v1/books | jq '.'

4

5 curl http://proxy/api/v1/books | jq '.'

6

7 curl http://proxy/api/v1/books | jq '.'

8

9 docker logs nginx

After making four requests we output nginx logs that should look like following (timestamps are
removed for brevity).

1 "GET /api/v1/books HTTP/1.1" 200 268 "-" "curl/7.35.0" "-" 10.100.193.200:32768

2 "GET /api/v1/books HTTP/1.1" 200 268 "-" "curl/7.35.0" "-" 10.100.193.200:32769

3 "GET /api/v1/books HTTP/1.1" 200 268 "-" "curl/7.35.0" "-" 10.100.193.200:32768

4 "GET /api/v1/books HTTP/1.1" 200 268 "-" "curl/7.35.0" "-" 10.100.193.200:32769

While ports might be different in your case, it is obvious that the first request was sent to the port
32768, the next one to the 32769, then to the 32768 again, and, finally, to the 32769. It is a success,
with nginx not only acting as a proxy but also load balancing requests among all instances of the
service we deployed.

Proxy Services 158

Figure 9-3: Services with automatic proxy with Consul Template

We still haven’t tested the error handling we set up with the proxy_next_upstream instruction. Let’s
remove one of the service instances and confirm that nginx handles failures correctly.

1 docker stop vagrant_app_2

2

3 curl http://proxy/api/v1/books | jq '.'

4

5 curl http://proxy/api/v1/books | jq '.'

6

7 curl http://proxy/api/v1/books | jq '.'

8

9 curl http://proxy/api/v1/books | jq '.'

We stopped one service instance and made several requests. Without the proxy_next_upstream
instruction, nginx would fail on every second request since one of the two services set as upstreams
are not working anymore. However, all four requests worked correctly. We can observe what nginx
did by taking a look at its logs.

1 docker logs nginx

The output should be similar to the following (timestamps are removed for brevity).

Proxy Services 159

1 "GET /api/v1/books HTTP/1.1" 200 268 "-" "curl/7.35.0" "-" 10.100.193.200:32768

2 [error] 12#12: *98 connect() failed (111: Connection refused) while connecting t\

3 o upstream, client: 172.17.42.1, server: _, request: "GET /api/v1/books HTTP/1.1\

4 ", upstream: "http://10.100.193.200:32769/api/v1/books", host: "localhost"

5 [warn] 12#12: *98 upstream server temporarily disabled while connecting to upstr\

6 eam, client: 172.17.42.1, server: _, request: "GET /api/v1/books HTTP/1.1", upst\

7 ream: "http://10.100.193.200:32768/api/v1/books", host: "localhost"

8 "GET /api/v1/books HTTP/1.1" 200 268 "-" "curl/7.35.0" "-" 10.100.193.200:32768,\

9 10.100.193.200:32768

10 "GET /api/v1/books HTTP/1.1" 200 268 "-" "curl/7.35.0" "-" 10.100.193.200:32768

11 "GET /api/v1/books HTTP/1.1" 200 268 "-" "curl/7.35.0" "-" 10.100.193.200:32768

The first request went to the port 32768 served by the instance that is still running. As expected,
nginx sent the second request to the port 32768. Since the response was 111 (Connection refused),
it decided to temporarily disable this upstream and try with the next one in line. From there on, all
the rest of requests were proxied to the port 32768.

With only a few lines in configuration files, we managed to set up the proxy and combine it with
load balancing and failover strategy. Later on, when we get to the chapter that will explore self-
healing systems, we’ll go even further and make sure not only that proxy works only with running
services, but also how to restore the whole system to a healthy state.

When nginx is combined with service discovery tools, we have an excellent solution. However, we
should not use the first tool that comes along, so we’ll evaluate a few more options. Let us stop the
nginx container and see how HAProxy behaves.

1 docker stop nginx

HAProxy

Just like nginx, HAProxy¹²³ is a free, very fast and reliable solution offering high availability, load
balancing, and proxying. It is particularly suited for very high traffic websites and powers quite
many of the world’s most visited ones.

We’ll speak about the differences later on when we compare all proxy solutions we’re exploring. For
now, suffice to say that HAProxy is an excellent solution and probably the best alternative to nginx.

We’ll start with practical exercises and try to accomplish with HAProxy the same behavior as the
one with have with nginx. Before we provision the proxy node with HAProxy, let us take a quick
look at the tasks in the Ansible role haproxy¹²⁴.

¹²³http://www.haproxy.org/
¹²⁴https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/haproxy/tasks/main.yml

http://www.haproxy.org/
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/haproxy/tasks/main.yml
http://www.haproxy.org/
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/haproxy/tasks/main.yml

Proxy Services 160

1 - name: Directories are present

2 file:

3 dest: "{{ item }}"

4 state: directory

5 with_items: directories

6 tags: [haproxy]

7

8 - name: Files are present

9 copy:

10 src: "{{ item.src }}"

11 dest: "{{ item.dest }}"

12 with_items: files

13 register: result

14 tags: [haproxy]

15

16 - name: Container is running

17 docker:

18 image: million12/haproxy

19 name: haproxy

20 state: running

21 ports: "{{ ports }}"

22 volumes: /data/haproxy/config/:/etc/haproxy/

23 tags: [haproxy]

The haproxy role is very similar to the onewe used for nginx.We created some directories and copied
some files (we’ll see them later on). The major thing to note is that, unlike most other containers
not built by us, we’re not using the official haproxy container. The main reason is that the official
image has no way to reload HAProxy configuration. We’d need to restart the container every time
we update HAProxy configuration, and that would produce some downtime. Since one of the goals
is to accomplish zero-downtime, restarting the container is not an option. Therefore, we had to look
at alternatives, and the user million12 has just what we need. The million12/haproxy¹²⁵ container
comes with inotify (inode notify). It is a Linux kernel subsystem that acts by extending filesystems to
notice changes, and report them to applications. In our case, inotify will reload HAProxy whenever
we change its configuration.

Let us proceed and provision HAProxy on the proxy node.

1 ansible-playbook /vagrant/ansible/haproxy.yml \

2 -i /vagrant/ansible/hosts/proxy

Manually Configuring HAProxy

We’ll start by checking whether HAProxy is running.

¹²⁵https://hub.docker.com/r/million12/haproxy/

https://hub.docker.com/r/million12/haproxy/
https://hub.docker.com/r/million12/haproxy/

Proxy Services 161

1 export DOCKER_HOST=tcp://proxy:2375

2

3 docker ps -a

4

5 docker logs haproxy

The docker ps command showed that the haproxy container has the status Exited, and the logs
produced the output similar to the following.

1 [2015-10-16 08:55:40] /usr/local/sbin/haproxy -f /etc/haproxy/haproxy.cfg -D -p \

2 /var/run/haproxy.pid

3 [2015-10-16 08:55:40] Current HAProxy config /etc/haproxy/haproxy.cfg:

4 ==\

5 ====================

6 cat: /etc/haproxy/haproxy.cfg: No such file or directory

7 ==\

8 ====================

9 [ALERT] 288/085540 (9) : Could not open configuration file /etc/haproxy/haproxy.\

10 cfg : No such file or directory

11 [ALERT] 288/085540 (10) : Could not open configuration file /etc/haproxy/haproxy\

12 .cfg : No such file or directory

HAProxy complained that there is no haproxy.cfg configuration file and stopped the process.
Actually, the “fault” is in the playbook we run. The only file we created is haproxy.cfg.orig (more
about it later) and that there is no haproxy.cfg. Unlike nginx, HAPRoxy cannot be run without
having, at least, one proxy set. We’ll set up the first proxy soon but, at the moment, we have none.
Since creating the configuration without any proxy is a waste of time (HAProxy fails anyway) and
we cannot provide one when provisioning the node for the first time since at that point there would
be no services running, we just skipped the creation of the haproxy.cfg.

Before we proceed with the configuration of the first proxy, let us comment another difference
that might complicate the process. Unlike nginx, HAProxy does not allow includes. The complete
configuration needs to be in a single file. That will pose certain problems since the idea is to add or
modify only configurations of the service we are deploying and ignore the rest of the system.We can,
however, simulate includes by creating parts of the configuration as separate files and concatenate
them every time we deploy a new container. For this reason, we copied the haproxy.cfg.orig¹²⁶ file
as part of the provisioning process. Feel free to take a look at it. We won’t go into details since it
contains mostly the default settings and HAProxy has a decent documentation that you can consult.
The important thing to note is that the haproxy.cfg.orig file contains settings without a single proxy
being set.

We’ll create the HAProxy configuration related to the service we have running in the similar way
as we did before.

¹²⁶https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/haproxy/files/haproxy.cfg.orig

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/haproxy/files/haproxy.cfg.orig
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/haproxy/files/haproxy.cfg.orig

Proxy Services 162

1 PORT=$(docker inspect \

2 --format='{{(index (index .NetworkSettings.Ports "8080/tcp") 0).HostPort}}' \

3 vagrant_app_1)

4

5 echo $PORT

6

7 echo "

8 frontend books-ms-fe

9 bind *:80

10 option http-server-close

11 acl url_books-ms path_beg /api/v1/books

12 use_backend books-ms-be if url_books-ms

13

14 backend books-ms-be

15 server books-ms-1 10.100.193.200:$PORT check

16 " | tee books-ms.service.cfg

We started by inspecting the vagrant_app_1 container in order to assign the current port to the
PORT variable and use it to create the books-ms.service.cfg file.

HAProxy uses similar logic as nginx even though things are named differently. The frontend defines
how requests should be forwarded to backends. In a way, the frontend is analogous to the nginx’
location instruction and the backend to the upstream.What we did can be translated to the following.
Define a frontend called books-ms-fe, bind it to the port 80 and, whenever the request part starts with
/api/v1/books, use the backend called books-ms-be. The backend books-ms-be has (at the moment)
only one server defined with the IP 10.100.193.200 and the port assigned by Docker. The check
argument has (more or less) the same meaning as in nginx and is used to skip proxying to services
that are not healthy.

Now that we have the general settings in the file haproxy.cfg.orig and those specific to services
we’re deploying (named with the .service.cfg extension), we can concatenate them into a single
haproxy.cfg configuration file and copy it to the proxy node.

1 cat /vagrant/ansible/roles/haproxy/files/haproxy.cfg.orig \

2 *.service.cfg | tee haproxy.cfg

3

4 scp haproxy.cfg proxy:/data/haproxy/config/haproxy.cfg

Since the container is not running, we’ll need to start it (again), and then we can check whether the
proxy is working correctly by querying the service.

Proxy Services 163

1 curl http://proxy/api/v1/books | jq '.'

2

3 docker start haproxy

4

5 docker logs haproxy

6

7 curl http://proxy/api/v1/books | jq '.'

The first request returned the “Connection refused” error. We used it to confirm that no proxy
is running. Then we started the haproxy container and saw through the container logs that the
configuration file we created is valid and indeed used by the proxy service. Finally, we sent the
request again, and, this time, it returned a valid response.

So far, so good. We can proceed and automate the process using Consult Template.

Automatically Configuring HAProxy

We’ll try to do the same or very similar steps as what we did before with nginx. That way you can
compare the two tools more easily.

We’ll start by scaling the service.

1 docker-compose scale app=2

2

3 docker-compose ps

Next we should download the haproxy.ctmpl¹²⁷ template from the code repository. Before we do
that, let us take a quick look at its contents.

1 frontend books-ms-fe

2 bind *:80

3 option http-server-close

4 acl url_books-ms path_beg /api/v1/books

5 use_backend books-ms-be if url_books-ms

6

7 backend books-ms-be

8 {{range service "books-ms" "any"}}

9 server {{.Node}}_{{.Port}} {{.Address}}:{{.Port}} check

10 {{end}}

The way we created the template follows the same pattern as the one we used with nginx. The only
difference is that HAProxy needs each server to be uniquely identified so we added the serviceNode
and Port that will serve as the server ID.

Let’s download the template and run it through Consul Template.

¹²⁷https://github.com/vfarcic/books-ms/blob/master/haproxy.ctmpl

https://github.com/vfarcic/books-ms/blob/master/haproxy.ctmpl
https://github.com/vfarcic/books-ms/blob/master/haproxy.ctmpl

Proxy Services 164

1 wget http://raw.githubusercontent.com/vfarcic\

2 /books-ms/master/haproxy.ctmpl \

3 -O haproxy.ctmpl

4

5 sudo consul-template \

6 -consul proxy:8500 \

7 -template "haproxy.ctmpl:books-ms.service.cfg" \

8 -once

9

10 cat books-ms.service.cfg

We downloaded the template using wget and run the consul-template command.

Let us concatenate all the files into haproxy.cfg, copy it to the proxy node and take a look at haproxy
logs.

1 cat /vagrant/ansible/roles/haproxy/files/haproxy.cfg.orig \

2 *.service.cfg | tee haproxy.cfg

3

4 scp haproxy.cfg proxy:/data/haproxy/config/haproxy.cfg

5

6 docker logs haproxy

7

8 curl http://proxy/api/v1/books | jq '.'

All that’s left is to double check whether the proxy balancing works with two instances.

1 curl http://proxy/api/v1/books | jq '.'

2

3 curl http://proxy/api/v1/books | jq '.'

4

5 curl http://proxy/api/v1/books | jq '.'

6

7 curl http://proxy/api/v1/books | jq '.'

Unfortunately, HAProxy cannot output logs to stdout (preferred way to log Docker containers) so
we cannot confirm that balancing works. We could output logs to syslog, but that is outside of the
scope of this chapter.

We still haven’t tested the error handling we set up with the backend instruction. Let’s remove one
of the service instances and confirm that HAPeoxy handles failures correctly.

Proxy Services 165

1 docker stop vagrant_app_1

2

3 curl http://proxy/api/v1/books | jq '.'

4

5 curl http://proxy/api/v1/books | jq '.'

6

7 curl http://proxy/api/v1/books | jq '.'

8

9 curl http://proxy/api/v1/books | jq '.'

We stopped one service instance and made several requests, and all of them worked properly.

Without the possibility to include files into HAProxy configuration, our job was slightly more
complicated. Not being able to log to stdout can be solved with syslog but will go astray from one of
the containers best practices. There is a reason for this HAProxy behavior. Logging to stdout slows
it down (noticeable only with an enormous number of requests). However, it would be better if that
is left as our choice and maybe the default behavior, instead of not being supported at all. Finally,
not being able to use the official HAProxy container might be considered a minor inconvenience.
None of those problems are of great importance. We solved the lack of includes, could log into syslog
and ended up using the container frommillion12/haproxy (we could also create our own that would
extend from the official one).

Proxy Tools Compared

Apache, nginx and HAProxy are by no means the only solutions we could use. There are many
projects available and making a choice is harder than ever.

One of the open source projects worth trying out is lighttpd¹²⁸ (pron. lighty). Just like nginx and
HAProxy, it was designed for security, speed, compliance, flexibility and high performance. It
features a small memory footprint and efficient management of the CPU-load.

If JavaScript is your language of preference, [node-http-proxy] could be a worthy candidate. Unlike
other products we explored, node-http-proxy uses JavaScript code to define proxies and load
balancing.

VulcanD¹²⁹ is a project to keep an eye on. It is programmable proxy and load balancer backed by
etcd. A similar process that we did with Consul Template and nginx/HAProxy is incorporated inside
VulcanD. It can be combined with Sidekick¹³⁰ to provide functionality similar to check arguments
in nginx and HAProxy.

¹²⁸http://www.lighttpd.net/
¹²⁹https://github.com/mailgun/vulcand
¹³⁰https://github.com/lokalebasen/sidekick

http://www.lighttpd.net/
https://github.com/mailgun/vulcand
https://github.com/lokalebasen/sidekick
http://www.lighttpd.net/
https://github.com/mailgun/vulcand
https://github.com/lokalebasen/sidekick

Proxy Services 166

There are many similar projects available, and it is certain that new and existing ones are into
making. We can expect more “unconventional” projects to appear that will combine proxy, load
balancing, and service discovery in many different ways.

However, my choice, for now, stays with nginx or HAProxy. None of the other products we spoke
about has anything to add and, in turn, each of them, at least, one deficiency.

Apache is process based, making its performance when faced with a massive traffic less than
desirable. At the same time, its resource usage skyrockets easily. If you need a server that will serve
dynamic content, Apache is a great option, but should not be used as a proxy.

Lighttpd was promising when it appeared but faced many obstacles (memory leaks, CPU usage, and
so on) that made part of its users switch to alternatives. The community maintaining it is much
smaller than the one working on nginx and HAProxy. While it had its moment and many had high
expectations from it, today it is not the recommended solution.

What can be said about node-http-proxy? Even though it does not outperform nginx and HAProxy,
it is very close. The major obstacle would be its programmable configuration that is not well suited
for continuously changing proxies. If your language of choice is JavaScript and proxies should be
relatively static, node-http-proxy is a valid option. However, it still doesn’t provide any benefit over
nginx and HAProxy.

VulcanD, in conjunction with Sidekick, is a project to keep an eye on, but it is not yet production
ready (at least, not at the time this text was written). It is very unlikely that it will manage to
outperform main players. The potential problem with VulcanD is that it is bundled with etcd. If
that’s what you’re already using, great. On the other hand, if your choice fell to some other type
of Registry (for example Consul or Zookeeper), there is nothing VulcanD can offer. I prefer keeping
proxy and service discovery separated and put the glue between them myself. Real value VulcanD
provides is in a new way of thinking that combines proxy service with service discovery, and it will
probably be considered as one of the pioneers that opened the door for new types of proxy services.

That leaves us with nginx and HAProxy. If you spend some more time investigating opinions, you’ll
see that both camps have an enormous number of users defending one over the other. There are areas
where nginx outperforms HAProxy and others where it underperforms. There are some features
that HAProxy doesn’t have and other missing in nginx. But, the truth is that both are battle-tested,
both are an excellen solution, both have a huge number of users, and both are successfully used in
companies that have colossal traffic. If what you’re looking for is a proxy servicewith load balancing,
you cannot go wrong with either of them.

I am slightly more inclined towards nginx due to its better (official) Docker container (for example,
it allows configuration reloads with a HUP signal), option to log to stdout and the ability to
include configuration files. Excluding Docker container, HAProxy made the conscious decision not
to support those features due to possible performance issues they can create. However, I prefer
having the ability to choose when it’s appropriate to use them and when it isn’t. All those are truly
preferences of no great importance and, in many cases, the choice is made depending on a particular
use case one is trying to accomplish. However, there is one critical nginx feature that HAProxy
does not support. HAProxy can drop traffic during reloads. If microservices architecture, continuous

Proxy Services 167

deployment, and blue-green processes are adopted, configuration reloads are very common. We can
have several or even hundreds of reloads each day. No matter the reload frequency, with HAProxy
there is a possibility of downtime.

We have to make a choice, and it falls to nginx. It will be out proxy of choice throughout the rest of
the book.

With that being said, let us destroy the VMs we used in this chapter and finish the implementation
of the deployment pipeline. With service discovery and the proxy, we have everything we need.

1 exit

2

3 vagrant destroy -f

Implementation of the Deployment
Pipeline: The Late Stages
We had to make a break from the implementation of our deployment pipeline and explore service
discovery and proxy services. Without a proxy service, our containers would not be accessible in an
easy and reliable manner. To provide all the data proxy service needs, we spent some time exploring
different options and came up with a few combinations that could serve as service discovery
solutions.

With service discovery and proxy services in our tool-belt, we can continue where we left and
finalize manual execution of the deployment pipeline.

1. Checkout the code - Done
2. Run pre-deployment tests - Done
3. Compile and/or package the code - Done
4. Build the container - Done
5. Push the container to the registry - Done
6. Deploy the container to the production server - Done
7. Integrate the container - Pending
8. Run post-deployment tests - Pending
9. Push the tests container to the registry - Pending

168

Implementation of the Deployment Pipeline: The Late Stages 169

Figure 10-1: The intermediate stages of the deployment pipeline with Docker

We are missing three steps in our deployment pipeline. We should integrate our container and, once
that is done, run post-deployment tests. Finally, we should push our tests container to the registry
so that everyone can use it.

We’ll start by bringing up the two nodes we’re using for our deployment pipeline.

1 vagrant up cd prod

We’ll use the prod2.yml¹³¹ Ansible playbook to provision the prod node. It contains service discovery
and proxy roles that we already discussed in the previous chapter.

¹³¹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod2.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod2.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod2.yml

Implementation of the Deployment Pipeline: The Late Stages 170

1 - hosts: prod

2 remote_user: vagrant

3 serial: 1

4 sudo: yes

5 roles:

6 - common

7 - docker

8 - docker-compose

9 - consul

10 - registrator

11 - consul-template

12 - nginx

Once run, our prod node will have Consul, Registrator, Consul Template and nginx up and running.
They will allow us to proxy all requests to their destination services (at the moment only books-ms).
Let us run the playbook from the cd node.

1 vagrant ssh cd

2

3 ansible-playbook /vagrant/ansible/prod2.yml \

4 -i /vagrant/ansible/hosts/prod

Starting the Containers

Before we proceed with the integration, we should run the containers.

1 wget https://raw.githubusercontent.com/vfarcic\

2 /books-ms/master/docker-compose.yml

3

4 export DOCKER_HOST=tcp://prod:2375

5

6 docker-compose up -d app

Since we provisioned this node with Consul and Registrator, IPs and ports from those two containers
should be available in the registry. We can confirm this by visiting the Consul UI from a browser by
opening http://10.100.198.201:8500/ui¹³².

If we click on the Nodes button, we can see that the prod node is registered. Further on, clicking
the prod node button should reveal that it contains two services; consul and books-ms. The mongo
container that we started is not registered because it does not expose any ports.

¹³²http://10.100.198.201:8500/ui

http://10.100.198.201:8500/ui
http://10.100.198.201:8500/ui

Implementation of the Deployment Pipeline: The Late Stages 171

Figure 10-2: Consul screenshot with the prod node and services running on it

We can see the same information by sending a request to Consul.

1 curl prod:8500/v1/catalog/services | jq '.'

2

3 curl prod:8500/v1/catalog/service/books-ms | jq '.'

The first command listed all services registered in Consul. The output is as follows.

1 {

2 "dockerui": [],

3 "consul": [],

4 "books-ms": []

5 }

The second command output all the information related to the books-ms services.

Implementation of the Deployment Pipeline: The Late Stages 172

1 [

2 {

3 "ModifyIndex": 27,

4 "CreateIndex": 27,

5 "Node": "prod",

6 "Address": "10.100.198.201",

7 "ServiceID": "prod:vagrant_app_1:8080",

8 "ServiceName": "books-ms",

9 "ServiceTags": [],

10 "ServiceAddress": "10.100.198.201",

11 "ServicePort": 32768,

12 "ServiceEnableTagOverride": false

13 }

14]

With the containers up and running and their information stored in the service registry, we can
reconfigure nginx so that the books-ms service is accessible through the standard HTTP port 80.

Integrating the Service

We’ll start by confirming that nginx does not know about the existence of our service.

1 curl http://prod/api/v1/books

After sending the request, nginx responded with the “404 Not Found” message. Let’s change this.

1 exit

2

3 vagrant ssh prod

4

5 wget https://raw.githubusercontent.com/vfarcic\

6 /books-ms/master/nginx-includes.conf \

7 -O /data/nginx/includes/books-ms.conf

8

9 wget https://raw.githubusercontent.com/vfarcic\

10 /books-ms/master/nginx-upstreams.ctmpl \

11 -O /data/nginx/upstreams/books-ms.ctmpl

12

13 consul-template \

14 -consul localhost:8500 \

15 -template "/data/nginx/upstreams/books-ms.ctmpl:\

Implementation of the Deployment Pipeline: The Late Stages 173

16 /data/nginx/upstreams/books-ms.conf:\

17 docker kill -s HUP nginx" \

18 -once

We already did most of those steps in the previous chapter so we’ll go through them very briefly.
We entered the prod node and downloaded the includes file and upstreams template from the
code repository. Then we run consul-template that fetched data from Consul and applied them
to the template. The result is the nginx upstreams configuration file. Please note that, this time,
we added the third argument docker kill -s HUP nginx. Not only that consul-template created
the configuration file from the template, but it also reloaded nginx. The reason that we did those
command from the prod server instead of doing everything remotely like in the previous chapters
lies in automation. The steps we just run are much closer to the way we’ll automate this part of the
process in the next chapter.

Now we can test whether our service is indeed accessible through the port 80.

1 exit

2

3 vagrant ssh cd

4

5 curl -H 'Content-Type: application/json' -X PUT -d \

6 "{\"_id\": 1,

7 \"title\": \"My First Book\",

8 \"author\": \"John Doe\",

9 \"description\": \"Not a very good book\"}" \

10 http://prod/api/v1/books | jq '.'

11

12 curl http://prod/api/v1/books | jq '.'

Running Post-Deployment Tests

While we did confirm that the service is accessible from nginx by sending the request and observing
the proper response, this way of verification is not reliable if we are trying to accomplish full
automation of the process. Instead, we should repeat the execution of our integration tests but,
this time, using port 80 (or no port at all since 80 is standard HTTP port).

Implementation of the Deployment Pipeline: The Late Stages 174

1 git clone https://github.com/vfarcic/books-ms.git

2

3 cd books-ms

4

5 docker-compose \

6 -f docker-compose-dev.yml \

7 run --rm \

8 -e DOMAIN=http://10.100.198.201 \

9 integ

The output is as follows.

1 [info] Loading project definition from /source/project

2 [info] Set current project to books-ms (in build file:/source/)

3 [info] Compiling 2 Scala sources to /source/target/scala-2.10/classes...

4 [info] Compiling 2 Scala sources to /source/target/scala-2.10/test-classes...

5 [info] ServiceInteg

6 [info]

7 [info] GET http://10.100.198.201/api/v1/books should

8 [info] + return OK

9 [info]

10 [info] Total for specification ServiceInteg

11 [info] Finished in 23 ms

12 [info] 1 example, 0 failure, 0 error

13 [info] Passed: Total 1, Failed 0, Errors 0, Passed 1

14 [success] Total time: 27 s, completed Sep 17, 2015 7:49:28 PM

As expected, the output shows that integration tests passed successfully. The truth is that we have
only one test that makes the same request as the curl command we run earlier. However, in a “real
world” situation, the number of tests would increase, and using proper testing frameworks is much
more reliable than running curl requests.

Pushing the Tests Container to the Registry

Truth be told, we already pushed this container to the registry to avoid building it every time we
need it and, therefore, save you from waiting. However, this time, we should push it as part of the
deployment pipeline process. We are trying to run tasks in order of their importance so that we get
feedback as fast as possible. Pushing containers with tests is very low on our list of priorities, so we
left it for the end. Now that everything else was run successfully, we can push the container and let
others pull it from the registry and use it as they see fit.

Implementation of the Deployment Pipeline: The Late Stages 175

1 docker push 10.100.198.200:5000/books-ms-tests

The Checklist

We managed to go through the whole deployment pipeline. It took us quite a lot of time since we
had to take a few brakes and explore different ways to proceed. We could not deploy to production
without exploring configuration management concepts and tools. Later on, we got stuck again and
had to learn about service discovery and proxy before being able to integrate the service container.

1. Checkout the code - Done
2. Run pre-deployment tests - Done
3. Compile and/or package the code - Done
4. Build the container - Done
5. Push the container to the registry - Done
6. Deploy the container to the production server - Done
7. Run post-deployment tests - Done
8. Push the tests container to the registry - Done

Figure 10-3: The late stages of the deployment pipeline with Docker

Implementation of the Deployment Pipeline: The Late Stages 176

Now we are all set. We are capable of running the deployment procedure manually. The next step
is to automate all those commands and start running the pipeline automatically from the beginning
to the end. We’ll destroy the nodes we used so that we can start over fresh and confirm that the
automated procedure indeed works.

1 exit

2

3 vagrant destroy -f

Automating Implementation of the
Deployment Pipeline
Now that we are in control of the process of manually executing the deployment pipeline, we can
start working on the creation of a fully automated version. After all, our goal is not to employ an
army of operators that will sit in front of their computers and continuously execute deployment
commands. Before we proceed, let us quickly go through the process one more time.

Deployment Pipeline Steps

The steps of the pipeline are as follows.

1. Check out the code
2. Run pre-deployment tests, compile and package the code
3. Build the container
4. Push the container to the registry
5. Deploy the container to the production server
6. Integrate the container
7. Run post-deployment tests
8. Push the tests container to the registry

177

Automating Implementation of the Deployment Pipeline 178

Figure 11-1: Deployment pipeline

To minimize the impact the pipeline has on our business, we tried our best to run as many tasks as
possible outside the production server. The only two steps that we had to perform on the prod node
is deployment itself and the integrations (at the moment only with the proxy service). All the rest
of the steps were done inside the cd server.

Automating Implementation of the Deployment Pipeline 179

Figure 11-2: Tasks distribution between the CD and production nodes

We already chose Ansible as the tool we’re using for servers provisioning. We used it in several
occasions to install packages, setup configurations and so on. Up until now, all those usages were
aimed at providing all the requirements necessary for the deployment of our containers.We’ll extend
the usage of Ansible playbooks and add the deployment pipeline to it.

Automating Implementation of the Deployment Pipeline 180

Figure 11-3: Automated deployment pipeline with Ansible

Of all the steps involved, we’ll leave only one of them outside of the automation scope. We won’t
check out the code with Ansible. The reason behind this is not that Ansible is not capable of cloning
a Git repository. It certainly is. The problem is that Ansible is not a tool designed to run continuously
and monitor code repositories for changes. There are a fewmore problems that we did not yet tackle.
For example, we do not have a set of actions that should be run in case of a failure of the process.
Another hole in the current pipeline is that there is a short downtime related to each deployment.
The process stops the running release and brings up the new one. Between those two actions, there
is a (short) period the service we’re deploying is not operational. We’ll leave those and other possible
improvements for later on.

Automating Implementation of the Deployment Pipeline 181

Figure 11-4: Missing pieces in the deployment pipeline

To get a better grasp on the process, we’ll go through each manual step we performed earlier and
see how it can be done with Ansible.

We’ll start by creating up the nodes and cloning the code.

1 vagrant up cd prod

2

3 vagrant ssh cd

4

5 git clone https://github.com/vfarcic/books-ms.git

The Playbook and the Role

If you already tried automated deployment, the chances are that the scripts you created were mostly
related to the deployment itself. With Ansible (and CM tools in general), we have the option to do the
process from scratch every time. Not only that we’ll automate the deployment, but we’ll set up the
whole server. We cannot be confident in which state the server is. For example, maybe it has nginx
or maybe it doesn’t. Maybe it did have the nginx container up and running but, for some reason,
its process stopped. Even if the process is running, maybe some crucial configuration changed. The
same logic can be applied to anything, directly or indirectly, related to the service we want to deploy.

Automating Implementation of the Deployment Pipeline 182

The approach we’ll take is to have a playbook that will make sure that everything is set correctly.
Ansible is intelligent enough to check the status of all those dependencies and applies changes only
if something is wrong.

Let us take a look at the service.yml¹³³ playbook.

1 - hosts: prod

2 remote_user: vagrant

3 serial: 1

4 sudo: yes

5 roles:

6 - common

7 - docker

8 - docker-compose

9 - consul

10 - registrator

11 - consul-template

12 - nginx

13 - service

The service role will contain tasks directly related to the deployment and all the others before them
are dependencies our service needs to work correctly. Since we already went through all but the last
role from this playbook, stands to reason that we should jump directly to the definition of the list of
tasks in the service role defined in the roles/service/tasks/main.yml¹³⁴ file.

1 - include: pre-deployment.yml

2

3 - include: deployment.yml

4

5 - include: post-deployment.yml

Since this role will be a bit bigger than those we used before, we made the decision to split them
into logical groups (pre-deployment, deployment and post-deployment) and include them into the
main.yml file. That way we won’t be dealing with too many tasks at a time, and we’ll increase the
readability of the role.

Pre-Deployment Tasks

The first thing we should do is build the tests container. We already used the following command
(please don’t run it).

¹³³https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/service.yml
¹³⁴https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/tasks/main.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/service.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/service.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/tasks/main.yml

Automating Implementation of the Deployment Pipeline 183

1 docker pull \

2 -t 10.100.198.200:5000/books-ms-tests

3

4 docker build \

5 -t 10.100.198.200:5000/books-ms-tests \

6 -f Dockerfile.test \

7 .

Replicating the same command in Ansible is very easy with the Shell module¹³⁵.

1 - name: Tests container is pulled

2 shell: docker pull \

3 {{ registry_url }}{{ service_name }}-tests

4 delegate_to: 127.0.0.1

5 ignore_errors: yes

6 tags: [service, tests]

7

8 - name: Tests container is built

9 shell: docker build \

10 -t {{ registry_url }}{{ service_name }}-tests \

11 -f Dockerfile.test \

12 .

13 args:

14 chdir: "{{ repo_dir }}"

15 delegate_to: 127.0.0.1

16 tags: [service, tests]

We changed the command itself so that parts that might be prone to change are used as variables.
The first one is the registry_url that should contain the IP and the port of the Docker registry. The
default value is specified in the group_vars/all¹³⁶ file. The second one is more interesting. We are not
creating this role to work with the service books-ms but as something that can be used with (almost)
any service since all of them can follow the same pattern. We can do this sorts of things without
sacrificing the freedom since the key instructions are stored in a few files located in the repository of
each service. The most important ones are the Dockerfile.test and the Dockerfile that define testing
and service containers, Docker Compose configurations that define how should containers be run
and, finally, the proxy configuration and template. All those files are separated from the process
we’re creating, and people in charge of the project have the full freedom to tailor them to their
needs. That showcases a very important aspect I’m trying to promote. It is crucial not only to have
the right process in place but also to have the scripts, configurations and the code properly located.
Everything that is common to multiple projects should be centralized (as is the case with Ansible

¹³⁵http://docs.ansible.com/ansible/shell_module.html
¹³⁶https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/group_vars/all

http://docs.ansible.com/ansible/shell_module.html
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/group_vars/all
http://docs.ansible.com/ansible/shell_module.html
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/group_vars/all

Automating Implementation of the Deployment Pipeline 184

playbooks located in the vfarcic/ms-lifecycle¹³⁷ repository). On the other hand, things that might be
specific to a project should be stored in the repository that project resides in. Storing everything in
one centralized place would introduce quite a lot of waiting time since a project team would need
to request a change from the delivery team. The other extreme is just as wrong. If everything is
stored in the project repositories, there would be quite a lot of duplication. Each project would need
to come up with scripts to set up servers, deploy a service, and so on.

Next we specified a single argument chdir. It will make sure that the command is run from the
directory that, in this case, contains the Dockerfile.test file. The chdir value is the variable repo_dir
that, unlike registry_url does not have the default value. We’ll specify it at runtime when we run
the playbook. Then comes the delegate_to instruction. Since we are committed to disrupting the
destination server as little as possible, tasks like this one will be run on the localhost (127.0.0.1).
Finally, we set few tags that can be used to filter which tasks will or will not be run.

The reason behind pulling the tests container before building it is to save the time. The execution of
the playbook might change from one server to another and, if such a thing happens, without first
pulling the container from the Registry, Docker would build all the layers even though most of them
are likely to be the same as before. Take a note that we introduced the ignore_errors instruction.
Without it, the playbook would fail if this is the first build of the container and there is nothing to
be pulled.

Please keep in mind that the shell module should be avoided in most cases. The idea behind Ansible
is to specify the desired behavior and not the action that should be performed. Once that “desire” is
run, Ansible will try to “do the right thing”. If, for example, we specify that some package should
be installed, Ansible will check whether such a package already exists and do the installation only
if it doesn’t. The shell module that we used, in this case, will always run, no matter the state of
the system. In this particular situation, that is OK, because Docker itself will make sure that only
changed layers are built. It won’t build the whole container every time. Please keep this in mind
when designing your roles.

The rest of the commands we used in the pre-deployment phase are as follows (please don’t run
them).

1 docker-compose -f docker-compose-dev.yml \

2 run --rm tests

3

4 docker pull 10.100.198.200:5000/books-ms

5

6 docker build -t 10.100.198.200:5000/books-ms .

7

8 docker push 10.100.198.200:5000/books-ms

When translated to the Ansible format, the result is as follows.

¹³⁷https://github.com/vfarcic/ms-lifecycle

https://github.com/vfarcic/ms-lifecycle
https://github.com/vfarcic/ms-lifecycle

Automating Implementation of the Deployment Pipeline 185

1 - name: Pre-deployment tests are run

2 shell: docker-compose \

3 -f docker-compose-dev.yml \

4 run --rm tests

5 args:

6 chdir: "{{ repo_dir }}"

7 delegate_to: 127.0.0.1

8 tags: [service, tests]

9

10 - name: Container is built

11 shell: docker build \

12 -t {{ registry_url }}{{ service_name }} \

13 .

14 args:

15 chdir: "{{ repo_dir }}"

16 delegate_to: 127.0.0.1

17 tags: [service]

18

19 - name: Container is pushed

20 shell: docker push \

21 {{ registry_url }}{{ service_name }}

22 delegate_to: 127.0.0.1

23 tags: [service]

There’s not much to be said about those tasks. They all use the shell module and are all running on
localhost. We run the tests container that, besides the obvious function of checking the quality of
the code, compiles the service. The result of that compilation is used to build the service container
that is later on pushed to the Docker registry.

The final result can be seen in the roles/service/tasks/pre-deployment.yml¹³⁸ file and we can proceed
with the deployment tasks.

Deployment Tasks

The next set of commands we did when manually running the deployment pipeline had the goal of
creating directories and files required for the process. They were as follows (please don’t run them).

¹³⁸https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/tasks/pre-deployment.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/tasks/pre-deployment.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/tasks/pre-deployment.yml

Automating Implementation of the Deployment Pipeline 186

1 mkdir -p /data/books-ms

2

3 cd /data/books-ms

4

5 wget https://raw.githubusercontent.com/vfarcic\

6 /books-ms/master/docker-compose.yml

7

8 wget https://raw.githubusercontent.com/vfarcic\

9 /books-ms/master/nginx-includes.conf \

10 -O /data/nginx/includes/books-ms.conf

11

12 wget https://raw.githubusercontent.com/vfarcic\

13 /books-ms/master/nginx-upstreams.ctmpl \

14 -O /data/nginx/upstreams/books-ms.ctmpl

We created the service directory and downloaded the docker-compose.yml, nginx-includes.conf and
nginx-upstreams.ctmpl files from the code repository. Actually, the later two we downloaded later
on when the time came to change the proxy, but we can group them all together as a single Ansible
task. With Ansible, we’ll do it a bit differently. Since we already checked out the code, there is no
reason to download those files. We can just copy them to the destination server. Ansible tasks that
replicate this same set of commands are as follows.

1 - name: Directory is created

2 file:

3 path: /data/{{ service_name }}

4 recurse: yes

5 state: directory

6 tags: [service]

7

8 - name: Files are copied

9 copy:

10 src: "{{ item.src }}"

11 dest: "{{ item.dest }}"

12 with_items: files

13 tags: [service]

We created two tasks. The first one uses the Ansible module file to create the service directory.
Since this role is supposed to be generic and apply to (almost) any service, the name of the service
is a variable that we’ll set at runtime when we run the playbook. The second task uses the copy
module to copy all the files that we’ll need on the destination server. We’re using the with_items
instruction that will repeat this task for each entry into the *files_ variable. The variable is defined
in the roles/service/defaults/main.yml¹³⁹ file and is as follows.

¹³⁹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/defaults/main.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/defaults/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/defaults/main.yml

Automating Implementation of the Deployment Pipeline 187

1 files: [

2 {

3 src: "{{ repo_dir }}/docker-compose.yml",

4 dest: "/data/{{ service_name }}/docker-compose.yml"

5 }, {

6 src: "{{ repo_dir }}/nginx-includes.conf",

7 dest: "/data/nginx/includes/{{ service_name }}.conf"

8 }, {

9 src: "{{ repo_dir }}/nginx-upstreams.ctmpl",

10 dest: "/data/nginx/upstreams/{{ service_name }}.ctmpl"

11 }

12]

The source of all of those files utilizes the repo_dir variable that we already used in the pre-
deployment tasks. Similarly, file destinations are using the service_name variable.

Once we’re sure that all the files we’ll need are on the destination server, we can proceed with the
actual deployment that consists of two steps.

1 docker-compose pull app

2

3 docker-compose up -d app

4

5 consul-template \

6 -consul localhost:8500 \

7 -template "/data/nginx/upstreams/books-ms.ctmpl:\

8 /data/nginx/upstreams/books-ms.conf:\

9 docker kill -s HUP nginx" \

10 -once

First we pulled the latest image from the Docker registry and then we brought it up. When docker-

compose up is run, it checks whether the container image or its configuration changed when
compared with the running container. If it is indeed different, Docker Compose will stop the running
containers and run the new ones while preserving mounted volumes. We already discussed that,
during some time (between the stopping the current version and running the new one), our service
will be unavailable. We’ll deal with this problem later on. For now, a (very short) downtime will be
something we’ll have to live with. Finally, we run consul-template that updates configurations and
reloads nginx.

As you probably guessed, we’ll run those two commands through the Ansible shell module.

Automating Implementation of the Deployment Pipeline 188

1 - name: Containers are pulled

2 shell: docker-compose pull app

3 args:

4 chdir: /data/{{ service_name }}

5 tags: [service]

6

7 - name: Containers are running

8 shell: docker-compose up -d app

9 args:

10 chdir: /data/{{ service_name }}

11 tags: [service]

12

13 - name: Proxy is configured

14 shell: consul-template \

15 -consul localhost:8500 \

16 -template "{{ ct_src }}:{{ ct_dest }}:{{ ct_cmd }}" \

17 -once

18 tags: [service]

We’re not doing anything new. It’s the same pattern as the shell tasks we defined as pre-deployment
tasks. The only thing worth noting is that we used variables as the -template value. The only reason
behind this is that the length of the book has a maximum limit of characters per line, and all the
parameters would not fit. Those variables are defined in the roles/service/defaults/main.yml¹⁴⁰ file
and are as follows.

1 ct_src: /data/nginx/upstreams/{{ service_name }}.ctmpl

2 ct_dest: /data/nginx/upstreams/{{ service_name }}.conf

3 ct_cmd: docker kill -s HUP nginx

The final result can be seen in the roles/service/tasks/deployment.yml¹⁴¹ file. Please note that, unlike
the pre-deployment tasks, all those in this group are indeed going to run on the destination server.
That can be seen by the lack of the delegate_to: 127.0.0.1 instruction.

We’re done with deployment and can turn our attention to the last group of tasks.

Post-Deployment Tasks

All that is left is to run integration tests and push the tests container to the registry. As a reminder,
the commands are as follows (please don’t run them).

¹⁴⁰https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/defaults/main.yml
¹⁴¹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/tasks/deployment.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/defaults/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/tasks/deployment.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/defaults/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/tasks/deployment.yml

Automating Implementation of the Deployment Pipeline 189

1 docker-compose \

2 -f docker-compose-dev.yml \

3 run --rm \

4 -e DOMAIN=http://10.100.198.201 \

5 integ

6

7 docker push 10.100.198.200:5000/books-ms-tests

Ansible equivalent of those commands is as follows.

1 - name: Post-deployment tests are run

2 shell: docker-compose \

3 -f docker-compose-dev.yml \

4 run --rm \

5 -e DOMAIN={{ proxy_url }} \

6 integ

7 args:

8 chdir: "{{ repo_dir }}"

9 delegate_to: 127.0.0.1

10 tags: [service, tests]

11

12 - name: Tests container is pushed

13 shell: docker push \

14 {{ registry_url }}{{ service_name }}-tests

15 delegate_to: 127.0.0.1

16 tags: [service, tests]

There’s nothing new here so we won’t go into details. The complete version of post-deployment
tasks can be found in the roles/service/tasks/post-deployment.yml¹⁴² file.

Running the Automated Deployment Pipeline

Let us see the service playbook in action.

¹⁴²https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/tasks/post-deployment.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/tasks/post-deployment.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/service/tasks/post-deployment.yml

Automating Implementation of the Deployment Pipeline 190

1 cd ~/books-ms

2

3 ansible-playbook /vagrant/ansible/service.yml \

4 -i /vagrant/ansible/hosts/prod \

5 --extra-vars "repo_dir=$PWD service_name=books-ms"

We run the playbook service.yml¹⁴³ with the inventory pointing to the hosts/prod¹⁴⁴ file and few
extra variables. The first one is the repo_dir with the value of the current directory ($PWD). The
second represents the name of the service we want to deploy (books-ms). At the moment, we have
only this service. If there would be more, they could all be deployed with this same playbook by
changing the value of this variable.

The managed to have not only the fully automated deployment but also provisioning of the
destination server. The first of the playbook was done against a “virgin” Ubuntu server, so Ansible
made sure that everything needed for the deployment is properly configured. The result is not
perfect, but it is a good start.

Feel free to repeat the execution of the playbook and observe the differences when compared to the
first run. You’ll notice that most of the Ansible tasks will be in the status ok since there was nothing
to be done and that the playbook runs much faster.

What could be the things that we might be missing? There are quite a few. However, before we
proceed and try to fix them, we should set up a proper Continuous Deployment platform and see
whether it can help with the current process. Until then, let us destroy the VMs and let your computer
take a break.

1 exit

2

3 vagrant destroy -f

¹⁴³https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/service.yml
¹⁴⁴https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/prod

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/service.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/prod
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/service.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/prod

Continuous Integration (CI), Delivery
and Deployment (CD) Tools
We have the most of the process already automated with Ansible. Until now, we used playbooks
to automate two types of tasks; server provisioning and configuration and the deployment process.
While Ansible shines as a tool intended to provision and configure our servers, deployment (at least
in our context) is not its strongest side. We used it mostly as a substitute for bash scripts. Most
of the deployment tasks we have right now are using the Ansible shell module. We could have
used shell scripts instead, and the result would be, more or less, the same. Ansible is designed to
use promises as a way to ensure that the system is in the correct state. It does not work very well
with deployments when conditionals, try/catch statements and other types of logic are needed. The
main reason for using Ansible to deploy containers was avoidance to split the process into multiple
commands (provision with ansible, run a script, provision more, run more scripts, and so on). The
second, and more important, reason was that we did not cover CI/CD tools, so we used what we
had. That will change very soon.

What are we missing in our deployment pipeline? We are using Ansible to configure and provision
servers, and that works great.We are still looking for a better way to deploy software (calling Ansible
shell module is a bit cumbersome). We are also missing a way to monitor the repository so that new
deployments can be executed whenever there is a change in the code. When part of the process fails,
we do not have a mechanism to send notifications. We are also missing visual representation of all
our builds and deployments. The list can go on and on. What all those missing features have in
common is that they can be easily solved with CI/CD tools. Therefore, we should start looking at
the CI/CD platform we could use and adopt one of them.

CI/CD Tools Compared

One way to divide CI/CD tools is to put them into cloud services and self-hosted solutions groups.
There are a plethora of cloud services both for free and paid. Most of them are great for the more
simplified process than the one we’re trying to accomplish. If you have a small application consisting
out of few services and residing on no more than a few servers, cloud solutions are excellent. I used
many of them for my “pet” projects. Travis¹⁴⁵, Shippable¹⁴⁶, CircleCI¹⁴⁷ and Drone.io¹⁴⁸ are only a
few of them. They will run your scripts, build your applications and services and pack them into
containers. Most of them are neither designed nor capable of handling a cluster of servers especially

¹⁴⁵https://travis-ci.org/
¹⁴⁶https://app.shippable.com/
¹⁴⁷https://circleci.com/
¹⁴⁸https://drone.io/

191

https://travis-ci.org/
https://app.shippable.com/
https://circleci.com/
https://drone.io/
https://travis-ci.org/
https://app.shippable.com/
https://circleci.com/
https://drone.io/

Continuous Integration (CI), Delivery and Deployment (CD) Tools 192

when it is private or self-hosted. That is not to say that there are no cloud solutions that would fit
this scenario. There are, but they tend to be too expensive on a large scale. With that in mind, we
should look for self-hosted solutions.

There’s a hell of a lot of self-hosted CI/CD tools, ranging from free offerings all the way to very
expensive ones. Some of the commonly used self-hosted CI/CD tools like Jenkins¹⁴⁹, Bamboo¹⁵⁰,
GoCD¹⁵¹, Team City¹⁵² and Electric Cloud¹⁵³ are only a few among many others. All of them have
their strengths andweaknesses. However, Jenkins sticks out from the crowd thanks to its community.
No other tool has such a big number of people contributing on a daily basis. It has an excellent
support and, through its plugins, it can be extended to do almost anything we might need. You will
hardly find yourself in a need of something that is not already covered with one or more plugins.
Even if you find a use case that is not covered, writing your own plugin (and hopefully making it
public for others to use) is a very easy thing to do. Community and plugins are its greatest strength
that makes it more widely adopted than any other tool.

The chances are that you already used Jenkins, or, at least, heard of it. One of the main reasons
companies are choosing some other tool (especially Bamboo and Team City) are their enterprise
offerings. When an organization becomes big, it needs support and reliability that comes with it.
It needs those extra features and know-how that enterprise offerings provide. Cloud Bees¹⁵⁴ is one
such company formed recently. They offer Jenkins Enterprise version and have an excellent support
capable of handling almost any scenario related to continuous integration, delivery or deployment.
They have the community version of Jenkins that can be obtained for free but also offer paid
enterprise features and support. That is another reason one should choose Jenkins. No other tool
(at least among those previously mentioned) has fully free tool and, at the same time, offers paid
support and additional features. Team City can be downloaded for free but has a limited number of
agents. GoCD is free but it doesn’t provide any support. Bamboo is similar to Team City regarding
limitations imposed on the free version. By choosing Jenkins, we are choosing battle tested and most
widely used tool supported by a vast community that has, if such a need arises, paid support and
features through CloudBees.

While writing this book, I chose to join the CloudBees team (the company behind
Enterprise Jenkins). The decision to promote Jenkins throughout this book was not based
on my employment in CloudBees. It’s the other way around. I chose to join them because
I believe that Jenkins is the best CI/CD tool in the market.

¹⁴⁹https://jenkins-ci.org/
¹⁵⁰https://www.atlassian.com/software/bamboo/
¹⁵¹http://www.go.cd/
¹⁵²https://www.jetbrains.com/teamcity/
¹⁵³http://electric-cloud.com/
¹⁵⁴https://www.cloudbees.com/

https://jenkins-ci.org/
https://www.atlassian.com/software/bamboo/
http://www.go.cd/
https://www.jetbrains.com/teamcity/
http://electric-cloud.com/
https://www.cloudbees.com/
https://jenkins-ci.org/
https://www.atlassian.com/software/bamboo/
http://www.go.cd/
https://www.jetbrains.com/teamcity/
http://electric-cloud.com/
https://www.cloudbees.com/

Continuous Integration (CI), Delivery and Deployment (CD) Tools 193

The Short History of CI/CD Tools

Jenkins¹⁵⁵ (forked from Hudson¹⁵⁶ after a dispute with Oracle) has been around for a long time
and established itself as the leading platform for the creation of continuous integration (CI) and
continuous delivery/deployment (CD) pipelines. The idea behind it is that we should create jobs
that perform operations like building, testing, deploying, and so on. Those jobs should be chained
together to create a CI/CD pipeline. The success was so big that other products followed its lead
and we got Bamboo¹⁵⁷, Team City¹⁵⁸, and others. They all used a similar logic of having jobs and
chaining them together. Operations, maintenance, monitoring, and the creation of jobs is mostly
done through their UIs. However, none of the other products managed to suppress Jenkins due to
its strong community support. There are over one thousand plugins, and one would have a hard
time imagining a task that is not supported by, at least, one of them. The support, flexibility, and
extensibility featured by Jenkins allowed it to maintain its reign as the most popular and widely used
CI/CD tool throughout all this time. The approach based on heavy usage of UIs can be considered
the first generation of CI/CD tools (even though there were others before).

With time, new products come into being and, with them, new approaches were born. Travis¹⁵⁹,
CircleCI¹⁶⁰, and the like, moved the process to the cloud and based themselves on auto-discovery
and, mostly YML, configurations that reside in the same repository as the code that should be moved
through the pipeline. The idea was good and provided quite a refreshment. Instead of defining your
jobs in a centralized location, those tools would inspect your code and act depending on the type of
the project. If, for example, they find build.gradle file, they would assume that your project should
be tested and built using Gradle¹⁶¹. As the result, they would run gradle check to test your code
and, if tests passed, follow it by gradle assemble to produce the artifacts. We can consider those
products to be the second generation of CI/CD tools.

The first and the second generation of tools suffer from different problems. Jenkins and the like
feature power and flexibility that allow us to create custom tailored pipelines that can handle
almost any level of complexity. This power comes with a price. When you have tens of jobs, their
maintenance is quite easy. However, when that number increases to hundreds, managing them can
become quite tedious and time demanding.

Let’s say that an average pipeline has five jobs (building, pre-deployment testing, deployment to a
staging environment, post-deployment testing, and deployment to production). In reality, there are
often more than five jobs but let’s keep it an optimistic estimate. If we multiply those jobs with, let’s
say, twenty pipelines belonging to twenty different projects, the total number reaches one hundred.
Now, imagine that we need to change all those jobs from, let’s say, Maven to Gradle. We can choose
to start modifying them through the Jenkins UI or be brave and apply changes directly in Jenkins

¹⁵⁵https://jenkins-ci.org/
¹⁵⁶http://hudson-ci.org/
¹⁵⁷https://www.atlassian.com/software/bamboo/
¹⁵⁸https://www.jetbrains.com/teamcity/
¹⁵⁹https://travis-ci.org/
¹⁶⁰https://circleci.com/
¹⁶¹http://gradle.org/

https://jenkins-ci.org/
http://hudson-ci.org/
https://www.atlassian.com/software/bamboo/
https://www.jetbrains.com/teamcity/
https://travis-ci.org/
https://circleci.com/
http://gradle.org/
https://jenkins-ci.org/
http://hudson-ci.org/
https://www.atlassian.com/software/bamboo/
https://www.jetbrains.com/teamcity/
https://travis-ci.org/
https://circleci.com/
http://gradle.org/

Continuous Integration (CI), Delivery and Deployment (CD) Tools 194

XML files that represent those jobs. Either way, this, seemingly simple, change would require quite
some dedication. Moreover, due to its nature, everything is centralized in one location making it
hard for teams to manage jobs belonging to their projects. Besides, project specific configurations
and code belong to the same repository where the rest of application code resides and not in some
central location. And Jenkins is not alone with this problem. Most of the other self-hosted tools
have it as well. It comes from the era when heavy centralization and horizontal division of tasks
was thought to be a good idea. At approximately the same time, we felt that UIs should solve most
of the problems. Today, we know that many of the types of tasks are easier to define and maintain
as code, than through some UI.

I remember the days when Dreamweaver was big. That was around the end of the nineties and the
beginning of year two thousand (bear in mind that at that time Dreamweaver was quite different
than today). It looked like a dream come true (hence the name?). I could create a whole web page
with my mouse. Drag and drop a widget, select few options, write a label, repeat. We could create
things very fast. What was not so obvious at that time was that the result was a loan that would need
to be paid with interests. The code Dreamweaver created for us was anything but maintainable. As
a matter a fact, sometimes it was easier to start over than modify pages created with it. That was
especially true when we had to do something not included in one of its widgets. It was a nightmare.
Today, almost no one writes HTML and JavaScript by using drag & drop tools. We write the code
ourselves instead of relying on other tools to write it for us. There are plenty of other examples. For
example, Oracle ESB, at least in its infancy, was similarly wrong. Drag & drop was not a thing to
rely on (but good for sales). That does not mean that GUIs are not used any more. They are, but
for very specific purposes. A web designer might rely on drag & drop before passing the result to a
coder.

What I’m trying to say is that different approaches belong to different contexts and types of tasks.
Jenkins and similar tools benefit greatly from their UIs for monitoring and visual representations of
statuses. The part it fails with is the creation and maintenance of jobs. That type of tasks would be
much better done through code. With Jenkins, we had the power but needed to pay the price for it
in the form of maintenance effort.

The “second generation” of CI/CD tools (Travis, CircleCI, and the like) reduced that maintenance
problem to an almost negligible effort. In many cases, there is nothing to be done since they will
discover the type of the project and “do the right thing”. In some other cases, we have to write
a travis.yml, a circle.yml, or a similar file, to give the tool additional instructions. Even in such a
case, that file tends to have only a few lines of specifications and resides together with the code
thus making it easy for the project team to manage it. However, these tools do not replace “the
first generation” since they tend to work well only on small projects with a very simple pipeline.
The “real” continuous delivery/deployment pipeline is much more complex than what those tools
are capable of. In other words, we gained low maintenance but lost the power and, in many cases,
flexibility.

Today, old-timers like Jenkins, Bamboo, and Team City, continue dominating the market and are
recommended tools to use for anything but small projects. At the same time, cloud tools like Travis
and CircleCI dominate smaller settings. The teammaintaining Jenkins codebase recognized the need

Continuous Integration (CI), Delivery and Deployment (CD) Tools 195

to introduce a few significant improvements that will bring it to the next level by combining the
best of both generations, and some more. I’ll call that change the “third generation” of CI/CD tools.
They introduced Jenkins Workflow¹⁶² and Jenkinsfile. Together, they bring some very useful and
powerful features. With Jenkins Workflow, we can write a whole pipeline using Groovy-based DSL.
The process can be written as a single script that utilizes most of the existing Jenkins features. The
result is an enormous reduction in code (Workflow scripts are much smaller than traditional Jenkins
job definitions in XML) and reduction in jobs (one Workflow job can substitute many traditional
Jenkins jobs). That results in much easier management and maintenance. On the other hand, newly
introduced Jenkinsfile allows us to define theWorkflow script inside the repository together with the
code. That means that developers in charge of the project can be in control of the CI/CD pipeline as
well. That way, responsibilities are much better divided. Overall Jenkins management is centralized
while individual CI/CD pipelines are placed where they belong (together with the code that should
be moved through it). Moreover, if we combine all that with the Multibranch Workflow job type,
we can even fine tune the pipeline depending on the branch. For example, we might have the full
process defined in the Jenkinsfile residing in the master branch and shorter flows in each feature
branch. What is put into each Jenkinsfile is up to those maintaining each repository/branch. With
the Multibranch Workflow job, Jenkins will create jobs whenever a new branch is created and run
whatever is defined in the file. Similarly, it will remove jobs when branches are removed. Finally,
Docker Workflow has been introduced as well, making Docker the first class citizen in Jenkins.

All those improvements brought Jenkins to a whole new level confirming its supremacy among
CI/CD platforms.

If even more is needed, there is the CloudBees Jenkins Platform - Enterprise Edition¹⁶³ that provides
fantastic features, especially when we need to run Jenkins at scale.

Jenkins

Jenkins shines with its plugins. There are so many of them that it would be hard to find something
we’d like to accomplish that is not already covered with at least one plugin. Want to connect to a
code repository? There is a plugin. Want to send notifications to Slack? There is a plugin. Want to
parse logs using your formulas? There is a plugin.

Being able to choose from so many plugins is a double edged sword. People tend to abuse it and
install plugins for many more things than its needed. One example would be the Ansible plugin.

We can select it as a build step and fill in the fields like Playbook path, Inventory, Tags to skip,
Additional parameters and so on. The screen could look like the one presented in the figure 12-01.

¹⁶²https://wiki.jenkins-ci.org/display/JENKINS/Workflow+Plugin
¹⁶³https://www.cloudbees.com/products/cloudbees-jenkins-platform/enterprise-edition

https://wiki.jenkins-ci.org/display/JENKINS/Workflow+Plugin
https://www.cloudbees.com/products/cloudbees-jenkins-platform/enterprise-edition
https://wiki.jenkins-ci.org/display/JENKINS/Workflow+Plugin
https://www.cloudbees.com/products/cloudbees-jenkins-platform/enterprise-edition

Continuous Integration (CI), Delivery and Deployment (CD) Tools 196

Figure 12-01: Ansible plugin used inside a Jenkins job

Alternative to the Ansible plugin would be just to use the Execute Shell build step (part of the Jenkins
core) and put the command we’d like to run. We wrote the automation ourselves and are familiar
with commands that should be run. By using those same commands there are fewer fields to be
filled or ignored, we know what will be run and can use those same commands as a reference if the
same process should be repeated outside of Jenkins.

Figure 12-02: Running Ansible playbook as a shell command

I many cases, automation should be something done outside Jenkins (or any other CI/CD tool).
From there on, all we have to do is tell Jenkins which script to run. That script can be in the
repository together with the code of the service we are deploying (for example deploy.sh) or, as
in our case, be generalized through few naming conventions and used for all services. No matter the
way automation scripts are organized, in most cases the best and the easiest way to use them inside

Continuous Integration (CI), Delivery and Deployment (CD) Tools 197

Jenkins is to just run the command associated with those scripts. That held true until recently. Now,
with the addition of Jenkinsfile, we can follow the same logic of creating project specific scripts and
keeping them in the project repository. The additional benefit it brings is that we can utilize Jenkins
specific features inside the Workflow script residing in the Jenkinsfile. If you need to run something
on a particular node, there is a module for it. If you need to use authentication stored in Jenkins,
there is a module for it. The list goes on and on, but the gist is that with Jenkinsfile and theWorkflow
we can continue relying on scripts residing inside the code repository and, at the same time, utilize
advanced Jenkins features.

The time has come to get our hands dirty and set up Jenkins.

Setting Up Jenkins

As always, we’ll start by creating virtual machines that we’ll use for our exploration of Jenkins.
We’ll create the cd node that will host our Jenkins server as well as Ansible playbooks that we’ll run
through it.

1 vagrant up cd prod

Once both servers are up and running, we can proceed and provision the prod node in the same way
as we did before.

1 vagrant ssh cd

2

3 ansible-playbook /vagrant/ansible/prod2.yml \

4 -i /vagrant/ansible/hosts/prod

Now we are ready to bring up Jenkins. Setting up the basic installation is very easy with Docker. All
we have to do is run a container with a few arguments.

1 sudo mkdir -p /data/jenkins

2

3 sudo chmod 0777 /data/jenkins

4

5 docker run -d --name jenkins \

6 -p 8080:8080 \

7 -v /data/jenkins:/var/jenkins_home \

8 -v /vagrant/.vagrant/machines:/machines \

9 jenkins

Continuous Integration (CI), Delivery and Deployment (CD) Tools 198

Docker detected that there is no local copy of the Jenkins container and started pulling it from
the Docker Hub. Once pulling is done, we’ll have a running instance that exposes the port 8080
and shares a few volumes. The /var/jenkins_home directory contains all Jenkins configuration.
It is handy to have it shared for the sake of configuration management that we’ll explore soon.
We gave full permissions (0777) to that directory in the host since the container processes run as
the jenkins user that does not exist in our system. It’s not a good solution security-wise, but it
should do for now. The second shared directory is /machines that is mapped to the host’s directory
/vagrant/.vagrant/machines. That’s the location where Vagrant keeps all SSH keys that we’ll need
to set up Jenkins nodes on which the actual jobs will be run. Please note that, if you’d run this on
production servers, you should generate keys with ssh-copy-id and share them instead of those
generated by Vagrant.

Once the Jenkins container is going, we can open http://10.100.198.200:8080¹⁶⁴ and explore the GUI.

Figure 12-03: Jenkins home screen after the standard installation

If this is the first time you are in front of Jenkins¹⁶⁵, please take a break from this book and spend
some time getting familiar with it. Its GUI is very intuitive, and there are a lot of online sources that
will help you get a basic understanding of how it works. We are about to dive into automation of
Jenkins administration. Even though we won’t use the GUI for that, understanding how it works
visually will help you understand better the tasks we are about to perform. Take your time with it
and, once you feel comfortable, return here for more.

Most people I know use Jenkins exclusively through its GUI. Some might use its API to run jobs or

¹⁶⁴http://10.100.198.200:8080
¹⁶⁵https://jenkins-ci.org/

http://10.100.198.200:8080
https://jenkins-ci.org/
http://10.100.198.200:8080
https://jenkins-ci.org/

Continuous Integration (CI), Delivery and Deployment (CD) Tools 199

automate some basic operations. And that’s fine, for a while. You start by installing a few plugins,
create a few jobs and feel great for accomplishing a lot very quickly. With time, the number of jobs
increases and with them the maintenance effort. It is not uncommon to have tens, hundreds or even
thousands of jobs defined and running periodically or being triggered by some events (for example
code commit). Administrating all those jobs through the GUI is hard and time demanding. Imagine,
for instance, that you want to add Slack¹⁶⁶ notifications to all jobs. Modifying jobs one by one is not
a good option when there’s a significant number of them.

There are different ways we can tackle the problem of Jenkins automation that is, primarily, focused
on creation and maintenance of its jobs. One approach would be to use some of the Jenkins plugins
that could help us out. A few of those are Job DSL¹⁶⁷ and Job Generator¹⁶⁸ plugins. We’ll take a
different approach. All Jenkins settings are stored as XML files located in the /var/jenkins_home
directory (we exposed it as a Docker volume). We can simply add new files or modify existing ones
when we need to change some Jenkins behavior. Since we are already familiar with Ansible, we can
continue using it as a tool to not only install but also maintain Jenkins. In that spirit, we’ll remove
the current Jenkins installation and start over with Ansible.

1 docker rm -f jenkins

2

3 sudo rm -rf /data/jenkins

We removed the Jenkins container and deleted the directory we exposed as a volume. Now we can
install it and configure it through Ansible.

Setting Up Jenkins with Ansible

Setting up Jenkins with Ansible is easy even though the role we’ll use has few complications we
haven’t encountered previously. Since it will take a fewminutes for the playbook to finish executing,
let’s run it first and discuss its definition while waiting for it to finish.

1 ansible-playbook /vagrant/ansible/jenkins-node.yml \

2 -i /vagrant/ansible/hosts/prod

3

4 ansible-playbook /vagrant/ansible/jenkins.yml \

5 -c local

First we set up Jenkins nodes that we’ll use later on. It should not take long to execute the first
playbook since all it has to do is make sure that JDK is installed (required by Jenkins, to be able to
connect to a node) and that the single directory /data/jenkins_slaves. Jenkins will use that directory

¹⁶⁶https://slack.com/
¹⁶⁷https://wiki.jenkins-ci.org/display/JENKINS/Job+DSL+Plugin
¹⁶⁸https://wiki.jenkins-ci.org/display/JENKINS/Job+Generator+Plugin

https://slack.com/
https://wiki.jenkins-ci.org/display/JENKINS/Job+DSL+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Job+Generator+Plugin
https://slack.com/
https://wiki.jenkins-ci.org/display/JENKINS/Job+DSL+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Job+Generator+Plugin

Continuous Integration (CI), Delivery and Deployment (CD) Tools 200

to store files when executing processes on those nodes. The jenkins role is in the jenkins.yml
playbook is a bit longer and will be worthwhile spending some time with. Let’s explore it in more
details. The jenkins.yml¹⁶⁹ playbook is as follows.

1 - hosts: localhost

2 remote_user: vagrant

3 serial: 1

4 sudo: yes

5 roles:

6 - consul-template

7 - jenkins

It installs Consul Template that we’re already familiar with so we’ll move straight to the roles/-
jenkins¹⁷⁰ role. The tasks are defined in the roles/jenkins/tasks/main.yml¹⁷¹ file and we’ll go through
them one by one.

The first task creates directories that we’ll need. As before, variables are defined in the roles/jenk-
ins/defaults/main.yml¹⁷²

1 - name: Directories are created

2 file:

3 path: "{{ item.dir }}"

4 mode: 0777

5 recurse: yes

6 state: directory

7 with_items: configs

8 tags: [jenkins]

With directories created, we can run the jenkins container. Even though it takes no time for the
container to start running, Jenkins itself requires a bit of patience until it is fully operational. Later
on, we’ll be issuing some commands to Jenkins API, so we’ll have to pause the playbook, for, let’s say,
half a minute, to be sure that Jenkins is operational. At the same time, this gives us the opportunity
to see pause module in action (even though it should be rarely used). Please notice that we are
registering the variable container_result and, later on, pausing so that Jenkins application inside the
container is fully operational before proceeding with the rest of tasks. This pause is performed if the
state of the Jenkins container changed.

¹⁶⁹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/jenkins.yml
¹⁷⁰https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/jenkins
¹⁷¹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/tasks/main.yml
¹⁷²https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/defaults/main.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/jenkins.yml
https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/jenkins
https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/jenkins
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/defaults/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/defaults/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/jenkins.yml
https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/jenkins
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/defaults/main.yml

Continuous Integration (CI), Delivery and Deployment (CD) Tools 201

1 - name: Container is running

2 docker:

3 name: jenkins

4 image: jenkins

5 ports: 8080:8080

6 volumes:

7 - /data/jenkins:/var/jenkins_home

8 - /vagrant/.vagrant/machines:/machines

9 register: container_result

10 tags: [jenkins]

11

12 - pause: seconds=30

13 when: container_result|changed

14 tags: [jenkins]

Next we should copy a few configuration files. We’ll start with roles/jenkins/files/credentials.xml¹⁷³,
followed by few nodes (roles/jenkins/files/cd_config.xml¹⁷⁴, roles/jenkins/files/prod_config.xml¹⁷⁵,
and so on) and a several other less important configurations. Feel free to see contents of those files.
At the moment, it is only important to understand that we need those configurations.

1 - name: Configurations are present

2 copy:

3 src: "{{ item.src }}"

4 dest: "{{ item.dir }}/{{ item.file }}"

5 mode: 0777

6 with_items: configs

7 register: configs_result

8 tags: [jenkins]

Next, we should make sure that several plugins are installed. Since our code is in GitHub, we’ll need
the Git Plugin. Another useful plugin that we’ll use is the Log Parser. Since Ansible logs are quite
big, we’ll use this plugin to break them into more manageable pieces. Few other plugins will be
installed as well, and we’ll discuss each of them when the time comes to use them.

Most people tend just to download plugins they need. Even the official Jenkins container that we are
using has a way to specify which plugins to download. However, that approach is very dangerous
since we’d need to define not only plugins we need but also their dependencies, dependencies of
those dependencies and so on. It would be easy to forget one of them or specify a wrong dependency.
If such a thing happens, at best, the plugin we wanted to use would not work. In some cases, even the

¹⁷³https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/credentials.xml
¹⁷⁴https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/cd_config.xml
¹⁷⁵https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/prod_config.xml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/credentials.xml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/cd_config.xml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/prod_config.xml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/credentials.xml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/cd_config.xml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/prod_config.xml

Continuous Integration (CI), Delivery and Deployment (CD) Tools 202

whole Jenkins server could stop functioning. We’ll take a different approach. Plugins can be installed
by sending an HTTP request to /pluginManager/installNecessaryPlugins with XML in the body.
Jenkins, upon receiving the request will download both the plugin we specify and its dependencies.
Since we don’t want to send the request if the plugin is already installed, we’ll use the creates
instruction specifying the path to the plugin. If the plugin exists, the task will not be run.

Most plugins require a restart of the application, so we’ll restart the container if any of the plugins
was added. Since the request to install a plugin is asynchronous, first we’ll have to wait until
plugin directory is created (Jenkins unpacks plugins into directories with the same name). Once
it is confirmed that all plugins are installed, we’ll restart Jenkins and wait (again) for some time
before it is fully operational. In other words, we send requests to Jenkins to install plugins and, if
they are not already installed, wait until Jenkins is finished with installations, restart the container
so that new plugins are used and wait for a while until the restart is finished.

1 - name: Plugins are installed

2 shell: "curl -X POST \

3 -d '<jenkins><install plugin=\"{{ item }}@latest\" /></jenkins>' \

4 --header 'Content-Type: text/xml' \

5 http://{{ ip }}:8080/pluginManager/installNecessaryPlugins"

6 args:

7 creates: /data/jenkins/plugins/{{ item }}

8 with_items: plugins

9 register: plugins_result

10 tags: [jenkins]

11

12 - wait_for:

13 path: /data/jenkins/plugins/{{ item }}

14 with_items: plugins

15 tags: [jenkins]

16

17 - name: Container is restarted

18 docker:

19 name: jenkins

20 image: jenkins

21 state: restarted

22 when: configs_result|changed or plugins_result|changed

23 tags: [jenkins]

24

25 - pause: seconds=30

26 when: configs_result|changed or plugins_result|changed

27 tags: [jenkins]

Now we are ready to create jobs. Since all of them will work in (more or less) the same way, we can
use a single template that will serve for all our jobs related with service deployments. We need to

Continuous Integration (CI), Delivery and Deployment (CD) Tools 203

create a separate directory for each job, apply the template, copy the result to the destination server
and, finally, if any of the jobs changed, reload Jenkins. Unlike plugins that require a full restart,
Jenkins will start using new jobs after the reload which is a very fast (almost instantaneous) action.

1 - name: Job directories are present

2 file:

3 path: "{{ home }}/jobs/{{ item.name }}"

4 state: directory

5 mode: 0777

6 with_items: jobs

7 tags: [jenkins]

8

9 - name: Jobs are present

10 template:

11 src: "{{ item.src }}"

12 dest: "{{ home }}/jobs/{{ item.name }}/config.xml"

13 mode: 0777

14 with_items: jobs

15 register: jobs_result

16 tags: [jenkins]

17

18 - name: Jenkins is reloaded

19 uri:

20 url: http://{{ ip }}:8080/reload

21 method: POST

22 status_code: 200,302

23 when: jobs_result|changed

24 ignore_errors: yes

25 tags: [jenkins]

In the future, if we’d like to addmore jobs, all we’d need to do is addmore entries to the jobs variable.
With a system like that, we can easily create as many Jenkins jobs as there are services with almost
no effort. Not only that but, if jobs need to be updated, all we’d need to do is change the template
and re-run the playbook, and the changes would be propagated to all the jobs in charge of building,
testing and deploying our services.

The jobs variable defined in the roles/jenkins/defaults/main.yml¹⁷⁶ file is as follows.

¹⁷⁶https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/defaults/main.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/defaults/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/defaults/main.yml

Continuous Integration (CI), Delivery and Deployment (CD) Tools 204

1 jobs: [

2 {

3 name: "books-ms-ansible",

4 service_name: "books-ms",

5 src: "service-ansible-config.xml"

6 },

7 ...

8]

The name and service_name values should be easy to understand. They represent the name of the
job and the name of the service. The third value is the source template we’ll use to create the job
configuration.

Finally, let’s take a look at the roles/jenkins/templates/service-ansible-config.xml¹⁷⁷ template.

1 <?xml version='1.0' encoding='UTF-8'?>

2 <project>

3 <actions/>

4 <description></description>

5 <logRotator class="hudson.tasks.LogRotator">

6 <daysToKeep>-1</daysToKeep>

7 <numToKeep>25</numToKeep>

8 <artifactDaysToKeep>-1</artifactDaysToKeep>

9 <artifactNumToKeep>-1</artifactNumToKeep>

10 </logRotator>

11 <keepDependencies>false</keepDependencies>

12 <properties>

13 </properties>

14 <scm class="hudson.plugins.git.GitSCM" plugin="git@2.4.1">

15 <configVersion>2</configVersion>

16 <userRemoteConfigs>

17 <hudson.plugins.git.UserRemoteConfig>

18 <url>https://github.com/vfarcic/{{ item.service_name }}.git</url>

19 </hudson.plugins.git.UserRemoteConfig>

20 </userRemoteConfigs>

21 <branches>

22 <hudson.plugins.git.BranchSpec>

23 <name>*/master</name>

24 </hudson.plugins.git.BranchSpec>

25 </branches>

26 <doGenerateSubmoduleConfigurations>false</doGenerateSubmoduleConfigurations>

¹⁷⁷https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-ansible-config.xml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-ansible-config.xml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-ansible-config.xml

Continuous Integration (CI), Delivery and Deployment (CD) Tools 205

27 <submoduleCfg class="list"/>

28 <extensions/>

29 </scm>

30 <canRoam>true</canRoam>

31 <disabled>false</disabled>

32 <blockBuildWhenDownstreamBuilding>false</blockBuildWhenDownstreamBuilding>

33 <blockBuildWhenUpstreamBuilding>false</blockBuildWhenUpstreamBuilding>

34 <triggers/>

35 <concurrentBuild>false</concurrentBuild>

36 <builders>

37 <hudson.tasks.Shell>

38 <command>export PYTHONUNBUFFERED=1

39

40 ansible-playbook /vagrant/ansible/service.yml \

41 -i /vagrant/ansible/hosts/prod \

42 --extra-vars "repo_dir=${PWD} service_name={{ item.service_name }}"\

43 ;</command>

44 </hudson.tasks.Shell>

45 </builders>

46 <publishers/>

47 <buildWrappers/>

48 </project>

It is a relatively big XML definition of a Jenkins job. I created it manually through the GUI, copied
the file and replaced values with variables. One of the key entries is the one that tells Jenkins the
location of the code repository.

1 <url>https://github.com/vfarcic/{{ item.service_name }}.git</url>

As you can see, we are, again, using naming conventions. The name of the repository is the same as
the name of the service and will be replaced with the value of the variable we saw earlier.

The second entry is the one that executes the command that runs Ansible playbook and builds,
packages, tests and deploys the service.

1 <command>export PYTHONUNBUFFERED=1

2

3 ansible-playbook /vagrant/ansible/service.yml \

4 -i /vagrant/ansible/hosts/prod \

5 --extra-vars "repo_dir=${PWD} service_name={{ item.service_name }}"\

6 ;</command>

As you can see, we’re running the same Ansible playbook that we created in the previous chapter.

Finally, the last task in the jenkins role is as follows.

Continuous Integration (CI), Delivery and Deployment (CD) Tools 206

1 - name: Scripts are present

2 copy:

3 src: scripts

4 dest: /data

5 mode: 0766

6 tags: [jenkins]

It copies scripts to the /data directory. We’ll explore those scripts later on.

The Ansible role jenkins is a good example of a more complicated use case. Until this chapter, most
of the provisioning and configurations we did with Ansible were much simpler. In most instances we
would update APT repository, install a package and, maybe, copy some configuration file. In some
other cases, we would only run a Docker container. There were many other cases but, in the essence,
they were all very simple since none of the other tools required much configuration. Jenkins was
quite different. Besides running a container, we had to create quite a quite a few configuration files,
install several plugins, create some jobs, and so on. As an alternative, we could (and probably should)
have created our container that would have everything but jobs inside it. That would simplify the
setup and, at the same time, provide a more reliable solution. However, I wanted to show you a bit
more complicated Ansible process.

I’ll leave the creation of a custom Jenkins image as an exercise. The image should contain everything
but jobs inside it. Create a Dockerfile, build and push the image to Docker Hub and modify Ansible
role jenkins so that the new container is used. It should share volumes with SSH keys and jobs so
that they can be updated from outside a container.

Running Jenkins Jobs

By now, the Ansible playbook we run earlier should have finished the execution. Not only that
Jenkins is up and running, but the books-ms job is created and waiting for us to use it.

Let’s take a look at the Jenkins GUI. Please open http://10.100.198.200:8080¹⁷⁸. You’ll see the home
page with a few jobs. The one we’ll be exploring first is the book-ms-ansible job. In a different
situation, our code repository would trigger a request to Jenkins to execute the build. However,
since we’re using public GitHub repo and this Jenkins instance is (probably) running on your laptop
and is not accessible from a public network, we’ll have to execute the job manually. Let’s click the
Schedule a build for books-ms-ansible button (icon with a clock and play arrow). You’ll see that the
first build of the books-ms-ansible job is running on the cd node located in the left-hand side of the
screen.

¹⁷⁸http://10.100.198.200:8080

http://10.100.198.200:8080
http://10.100.198.200:8080

Continuous Integration (CI), Delivery and Deployment (CD) Tools 207

Figure 12-04: Jenkins home screen with a few jobs

Let’s click the books-ms-ansible job, then click #1 link inside the Build History and, finally, the
Console Output. The same can be accomplished by opening the http://10.100.198.200:8080/job/books-
ms-ansible/lastBuild/console¹⁷⁹ URL. You will be presented with the output of the last build of that
job. As you probably noticed, the log is a bit big and it would be hard to find information about
a particular task. Luckily, we installed the Log Parser¹⁸⁰ plugin that can help us drill through logs
easier. But, first things first, we need to wait until the build is finished. We’ll use that time wisely
and explore the job configuration.

Please go back to the books-ms-ansible job main screen and click the Configure link located in the
left-hand menu (or open the link http://10.100.198.200:8080/job/books-ms-ansible/configure¹⁸¹).

The books-ms-ansible is a very simple job and yet, in most cases, we won’t need anything more
complicated if our automation scripts are done correctly (with or without Ansible). You’ll see that
the job is restricted to the cd node meaning that it can run only on servers named or labeled cd. That
way we can control which jobs are run on which servers. Part of the Jenkins setup was to create one
node called cd.

Source Code Management section has the reference to the GitHub repository. Please note that we are
missing a trigger that will run this job whenever there is a new commit. That can be accomplished
in a variety of ways. We could set Build Trigger to Poll SCM and schedule it to run periodically
(let’s say every 10 seconds). Please note that the scheduling format uses the cron syntax. In such a
case, Jenkins would regularly check the repository and, if anything changed (if there was a commit),
it would run the job. A better way would be to create a webhook directly in the repository. That
hook would invoke a Jenkins build on every commit. In such a case, the build would start running
almost instantaneously after the commit. At the same time, there would be no overhead created
by jobs periodically checking the repository. However, this approach would require Jenkins being
accessible from the repository (in this case GitHub) and we are currently running Jenkins inside

¹⁷⁹http://10.100.198.200:8080/job/books-ms-ansible/lastBuild/console
¹⁸⁰https://wiki.jenkins-ci.org/display/JENKINS/Log+Parser+Plugin
¹⁸¹http://10.100.198.200:8080/job/books-ms-ansible/configure

http://10.100.198.200:8080/job/books-ms-ansible/lastBuild/console
http://10.100.198.200:8080/job/books-ms-ansible/lastBuild/console
https://wiki.jenkins-ci.org/display/JENKINS/Log+Parser+Plugin
http://10.100.198.200:8080/job/books-ms-ansible/configure
http://10.100.198.200:8080/job/books-ms-ansible/lastBuild/console
https://wiki.jenkins-ci.org/display/JENKINS/Log+Parser+Plugin
http://10.100.198.200:8080/job/books-ms-ansible/configure

Continuous Integration (CI), Delivery and Deployment (CD) Tools 208

a private network. We choose neither since it is very unlikely that there will be a commit to the
books-ms repository while you are reading this book. It is up to you to investigate different ways to
trigger this job. We’ll simulate the same process by running builds manually. No matter the way the
job is run, the first thing it will do is clone the repository using information provided in the Source
Code Management section.

Now we reached the main part of the job; the Build section. I already mentioned that we could have
used the Ansible plugin to help us run the playbook. However, the command we should run is so
simple that using a plugin would only introduce additional complications. Inside the Build section,
we have the Execute shell step that runs the service.yml playbook is the same way as we run it
manually. We are using Jenkins only as a tool to detect changes to the code repository and run the
same commands we would run without it.

Figure 12-05: Jenkins books-ms-ansible job configuration screen

Finally, we have the Console output (build log) parsing set as the Post-build actions step. It parses
(in this case) Ansible logs so that they are displayed in a more user-friendly fashion. By this time,
the execution of the build probably finished, and we can take a look at the parsed log.

Go back to the build #1 of the books-ms job and click the Parsed Console Output link in the left-
hand menu or open the URL http://10.100.198.200:8080/job/books-ms-ansible/lastBuild/parsed_con-
sole/¹⁸². Under the section Info, you’ll see each Ansible task separated and can click any of them to
jump to the part of the output related to that task. If there were some problems during the execution,
they would appear under the link Error. We won’t go into details how the Log Parser plugin works.
I included it into this job mostly as a demonstration of the power Jenkins provides through its
plugins. There’s over a thousand of them available and new ones coming. Plugins are probably the
main advantage Jenkins has over other CI/CD tools. There is such a big community behind them
that you can rest assured that almost any need you have is (probably) covered. Even better, just by

¹⁸²http://10.100.198.200:8080/job/books-ms-ansible/lastBuild/parsed_console/

http://10.100.198.200:8080/job/books-ms-ansible/lastBuild/parsed_console/
http://10.100.198.200:8080/job/books-ms-ansible/lastBuild/parsed_console/
http://10.100.198.200:8080/job/books-ms-ansible/lastBuild/parsed_console/

Continuous Integration (CI), Delivery and Deployment (CD) Tools 209

exploring available plugins, you will get new ideas.

Even though this job fulfills all the essential purposes required to deploy the service (checkout
the code and run the Ansible playbook), there are a few additional tasks we could add to the job.
Probably the most interesting thing we could do is add notifications in case of a job failure. That
can be an email message, Slack notification or (almost) any other type of notification we’re used
to. I’ll leave that part to you as an exercise. Spend some time checking out plugins that would
help to send notifications, select one and install it. The Manage Plugins screen can be accessed by
clicking theManage Jenkins located in the left-handmenu on the home screen. As an alternative, the
same screen can be accessed by opening the URL http://10.100.198.200:8080/pluginManager/¹⁸³. Once
inside, follow plugin instructions and add it to the books-ms-ansible job. Once you’re comfortable
with it, try to do the same through Ansible. Add the new plugin to the plugins variable and put the
required entries to the service-ansible-config.xml template. The easiest way to do that is to apply
the changes through the UI, and then check the changes Jenkins did to the /data/jenkins/jobs/books-
ms-ansible/config.xml file in the cd node.

Setting Up Jenkins Workflow Jobs

Is there a better way to structure a job that will deploy the books-ms service? What we have right
now is a job consisting of multiple steps. One step checks out the code while the another runs
the Ansible script. We specified that it should run on the cd node and did few more minor steps.
Notifications are missing at the moment (unless you implemented them yourself) and they would
be another step in the job. Each step is a separate plugin. Some of them are distributed with Jenkins
core while others were added by us. With time, the number of steps might increase considerably. At
the same time, while Ansible is great for provisioning and configuring servers when used as a tool
to build, test and deploy services, it proved to be a bit cumbersome and lacking some of the features
that could be done easier with a simple bash script. On the other hand, bash scripts lack some of the
characteristics Ansible has. For example, Ansible is much better at running commands in remote
locations. The third option would be to move the deployment process to “traditional” Jenkins jobs.
That would also not be a great solution. We’d end up with quite a few jobs that would probably
run bash scripts as well. One job would do pre-deployment tasks on the cd node, another would
be in charge of deployment in the prod node, and we’d need a third one that would execute post-
deployment steps in the cd node. As a minimum, we would have three chained jobs. More likely,
there would be more. Maintaining many jobs is time-demanding and complicated at best.

We can utilize Jenkins’ Workflow Plugin¹⁸⁴ to write a script that does all the steps for us. We can
use it as an alternative to deployment we’re currently doing with Ansible. We already discussed
that Ansible shines at servers provisioning and configuration, but the deployment part could be
improved. The Workflow plugin allows us to script the whole job. This feature in itself is a great
way to continue relying heavily on automation. That is especially true since Jenkins XML is

¹⁸³http://10.100.198.200:8080/pluginManager/
¹⁸⁴https://wiki.jenkins-ci.org/display/JENKINS/Workflow+Plugin

http://10.100.198.200:8080/pluginManager/
https://wiki.jenkins-ci.org/display/JENKINS/Workflow+Plugin
http://10.100.198.200:8080/pluginManager/
https://wiki.jenkins-ci.org/display/JENKINS/Workflow+Plugin

Continuous Integration (CI), Delivery and Deployment (CD) Tools 210

very cumbersome and hard to write and read. It is enough to take a look at the service-ansible-
config.xml¹⁸⁵ that we used to define a simple job that deploys our services. Jenkins XML is cryptic
and with a lot of boilerplate definitions, Ansible is not designed to be used with conditionals nor it
has a decent substitute for try/catch statements and bash scripts are just an extra layer of complexity.
It is true that, at this point, our process is complicated, and we should strive to keep things as simple
as possible without sacrificing the goals we set in front of us.

Let’s give Workflow plugin a go and see whether it can help. We’ll combine it with the CloudBees
Docker Workflow Plugin¹⁸⁶.

We’ll begin by taking a look at the configuration of the books-ms job. We can navigate through the
Jenkins UI all theway to the job settings screen or simply open the http://10.100.198.200:8080/job/books-
ms/configure¹⁸⁷ URL.

Figure 12-06: Configuration screen of the books-ms Jenkins workflow job

Once inside the books-ms configuration, you’ll notice that the whole job consists only of a few
parameters and the workflow script. Unlike “regular” jobs, workflow allows us to script (almost)
everything. That, in turn, makes managing Jenkins jobs much easier. The roles/jenkins/tem-
plates/service-flow.groovy¹⁸⁸ script we’re using is as follows.

¹⁸⁵https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-ansible-config.xml
¹⁸⁶https://wiki.jenkins-ci.org/display/JENKINS/CloudBees+Docker+Workflow+Plugin
¹⁸⁷http://10.100.198.200:8080/job/books-ms/configure
¹⁸⁸https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-flow.groovy

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-ansible-config.xml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-ansible-config.xml
https://wiki.jenkins-ci.org/display/JENKINS/CloudBees+Docker+Workflow+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/CloudBees+Docker+Workflow+Plugin
http://10.100.198.200:8080/job/books-ms/configure
http://10.100.198.200:8080/job/books-ms/configure
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-flow.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-flow.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-ansible-config.xml
https://wiki.jenkins-ci.org/display/JENKINS/CloudBees+Docker+Workflow+Plugin
http://10.100.198.200:8080/job/books-ms/configure
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-flow.groovy

Continuous Integration (CI), Delivery and Deployment (CD) Tools 211

1 node("cd") {

2 git url: "https://github.com/vfarcic/${serviceName}.git"

3 def flow = load "/data/scripts/workflow-util.groovy"

4 flow.provision("prod2.yml")

5 flow.buildTests(serviceName, registryIpPort)

6 flow.runTests(serviceName, "tests", "")

7 flow.buildService(serviceName, registryIpPort)

8 flow.deploy(serviceName, prodIp)

9 flow.updateProxy(serviceName, "prod")

10 flow.runTests(serviceName, "integ", "-e DOMAIN=http://${proxyIp}")

11 }

The script starts with the node definition telling Jenkins that all the instructions should be run on
the cd node.

The first instruction inside the node is to check out the code from the Git repository. The git module
is one of the examples of the DSL created for the Jenkins Workflow. This instruction uses the
serviceName parameter defined in the Jenkins job.

Next, we’re using the load instruction that will include all the utility functions defined in the
workflow-util.groovy script. That way we won’t repeat ourselves when we create jobs with different
goals and processes. We’ll explore the workflow-util.groovy script very soon. The result of the load
is assigned to the flow variable.

From this point on, the rest of the script should be self-explanatory. We’re calling the provision
function passing it prod2.yml as variable. Then we’re calling the buildTest function and passing it
serviceName and registryIpPort job parameters as variables. And so on, and so forth. The functions
we are invoking are performing the same actions like those we implemented through Ansible,
and represent the deployment pipeline. With this separation between utility functions loaded as a
separate file and the workflow script itself, we can properly divide responsibilities. The utility script
provides functions multiple workflow scripts can use and benefits greatly from being centralized so
that improvements are done once. On the other hand, one workflow might not be the same as the
other so, in this case, it mostly contains invocations of utility functions.

Let’s take a closer look at the functions inside the workflow-util.groovy¹⁸⁹ script.

1 def provision(playbook) {

2 stage "Provision"

3 env.PYTHONUNBUFFERED = 1

4 sh "ansible-playbook /vagrant/ansible/${playbook} \

5 -i /vagrant/ansible/hosts/prod"

6 }

¹⁸⁹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy

Continuous Integration (CI), Delivery and Deployment (CD) Tools 212

The provision function is in charge of provisioning our servers before deployment. It defines stage
that helps us better identify the set of tasks this function is in charge of. That is followed by the
declaration of the PYTHONUNBUFFERED environment variable that tells Ansible to skip buffering
logs and display the output as soon as possible. Finally, we are invoking the Ansible playbook using
theworkflowmodule sh that runs any shell script. Sincewemight run different playbooks depending
on the type of the Jenkins job, we are passing the playbook name as the function variable.

The next function we’ll explore is in charge of building tests.

1 def buildTests(serviceName, registryIpPort) {

2 stage "Build tests"

3 def tests = docker.image("${registryIpPort}/${serviceName}-tests")

4 try {

5 tests.pull()

6 } catch(e) {}

7 sh "docker build -t \"${registryIpPort}/${serviceName}-tests\" \

8 -f Dockerfile.test ."

9 tests.push()

10 }

This time, we are using the docker module to declare the Docker image and assigning the result to
the tests variable. From there on, we are pulling the image, running a Shell script that builds a new
one in case something changed and, finally, pushing the result to the registry. Please note that image
pulling is inside a try/catch statement. The workflow is run for the first time, there will be no image
to pull, and, without a try/catch statement, the script would fail.

Next in line are functions for running tests and building the service image.

1 def runTests(serviceName, target, extraArgs) {

2 stage "Run ${target} tests"

3 sh "docker-compose -f docker-compose-dev.yml \

4 -p ${serviceName} run --rm ${extraArgs} ${target}"

5 }

6

7 def buildService(serviceName, registryIpPort) {

8 stage "Build service"

9 def service = docker.image("${registryIpPort}/${serviceName}")

10 try {

11 service.pull()

12 } catch(e) {}

13 docker.build "${registryIpPort}/${serviceName}"

14 service.push()

15 }

Continuous Integration (CI), Delivery and Deployment (CD) Tools 213

Those two functions use the same instructions as those we already discussed so we’ll jump over
them.

The function for deploying the service might need further explanation.

1 def deploy(serviceName, prodIp) {

2 stage "Deploy"

3 withEnv(["DOCKER_HOST=tcp://${prodIp}:2375"]) {

4 try {

5 sh "docker-compose pull app"

6 } catch(e) {}

7 sh "docker-compose -p ${serviceName} up -d app"

8 }

9 }

The new instruction is the withEnv. We’re using it to create the environment variable that has a
limited scope. It will exist only for instructions declared inside curly braces. In this case, environment
variable DOCKER_HOST is used only to pull and run the app container on a remote host.

The last function updates the proxy service.

1 def updateProxy(serviceName, proxyNode) {

2 stage "Update proxy"

3 stash includes: 'nginx-*', name: 'nginx'

4 node(proxyNode) {

5 unstash 'nginx'

6 sh "sudo cp nginx-includes.conf /data/nginx/includes/${serviceName}.conf"

7 sh "sudo consul-template \

8 -consul localhost:8500 \

9 -template \"nginx-upstreams.ctmpl:/data/nginx/upstreams/${serviceNam\

10 e}.conf:docker kill -s HUP nginx\" \

11 -once"

12 }

13 }

The new instructions are stash and unstash. Since we are updating the proxy on a different node
(defined as the proxyNode variable), we had to stash few files from the cd server and unstash them
in the proxy node. In other words, stash/unstash combination is equivalent to copying the files from
one server or directory to another.

All in all, the approach with Jenkins Workflow and Groovy DSL removes the need for deployment
defined in Ansible. We’ll keep using Ansible playbooks for provisioning and configuration since
those are the areas it truly shines. On the other hand, Jenkins Workflow and Groovy DSL provide

Continuous Integration (CI), Delivery and Deployment (CD) Tools 214

much more power, flexibility, and freedom when defining the deployment process. The main
difference is that Groovy is a scripting language and, therefore, provides a better syntax for this
type of tasks. At the same time, its integration with Jenkins allows us to utilize some powerful
features. For example, we could define five nodes with a label tests. Later on, if we specify that some
Workflow instructions should be run on a tests node, Jenkins would make sure that the least utilized
of those five nodes is used (or there might be a different logic depending on the way we set it up).

At the same time, by using Jenkins Workflow, we’re avoiding complicated and not easy to
understand XML definitions required by traditional Jenkins jobs and reducing the overall number of
jobs. There are many other advantages Workflow provides and we’ll discuss them later. The result
is a single script, much shorter than Ansible deployment tasks we had before, and, at the same
time, something easier to understand and update. We embraced Jenkins for tasks it is good at while
keeping Ansible for servers provisioning and configuration. The result is the combination that uses
the best of both worlds.

Let’s take another look at the configuration of the books-ms job. Please open the books-ms
configuration¹⁹⁰ screen in your favorite browser. You’ll see that the job contains only two set of
specifications. It starts with parameters and ends with the Workflow script we discussed earlier.
The script itself can be very generic since differences are declared through parameters. We could
multiply this job for all our services, and the only differences would be Jenkins parameters. That
way, management of those jobs can be handled through a single Ansible template defined in the
roles/jenkins/templates/service-workflow-config.xml¹⁹¹ file.

Let’s build the job and see how it fares. Please open the books-ms build¹⁹² screen. You’ll see that the
parameters are already pre-defined with reasonable values. The name of the service is the books-
ms parameter, the IP of the production server is the prodIp parameter, the IP of the proxy server
is the proxyIp parameter and, finally, the IP and the port of the Docker registry is defined as the
registryIpPort parameter. Once you click the Build button, the deployment will be initiated.

¹⁹⁰http://10.100.198.200:8080/job/books-ms/configure
¹⁹¹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-workflow-config.xml
¹⁹²http://10.100.198.200:8080/job/books-ms/build?delay=0sec

http://10.100.198.200:8080/job/books-ms/configure
http://10.100.198.200:8080/job/books-ms/configure
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-workflow-config.xml
http://10.100.198.200:8080/job/books-ms/build?delay=0sec
http://10.100.198.200:8080/job/books-ms/configure
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-workflow-config.xml
http://10.100.198.200:8080/job/books-ms/build?delay=0sec

Continuous Integration (CI), Delivery and Deployment (CD) Tools 215

Figure 12-07: Build screen of the books-ms Jenkins workflow job

We can monitor the execution of the job by opening the books-ms Console screen of the last build¹⁹³.

¹⁹³http://10.100.198.200:8080/job/books-ms/lastBuild/console

http://10.100.198.200:8080/job/books-ms/lastBuild/console
http://10.100.198.200:8080/job/books-ms/lastBuild/console

Continuous Integration (CI), Delivery and Deployment (CD) Tools 216

Figure 12-08: Console screen of the books-ms Jenkins workflow job

As you already know, many things are done as part of our deployment process and the logs can
be too big for us to find something fast. Luckily, Jenkins workflow jobs have the Workflow Steps
feature that can help. When the execution is finished, please click the Workflow Steps¹⁹⁴ link after
navigating to the last books-ms build¹⁹⁵. You’ll see that each stage and step is presented with a link
(icon representing a terminal screen) that allow us to investigate only logs belonging to the step in
question.

¹⁹⁴http://10.100.198.200:8080/job/books-ms/lastBuild/flowGraphTable/
¹⁹⁵http://10.100.198.200:8080/job/books-ms/lastBuild/

http://10.100.198.200:8080/job/books-ms/lastBuild/flowGraphTable/
http://10.100.198.200:8080/job/books-ms/lastBuild/
http://10.100.198.200:8080/job/books-ms/lastBuild/flowGraphTable/
http://10.100.198.200:8080/job/books-ms/lastBuild/

Continuous Integration (CI), Delivery and Deployment (CD) Tools 217

Figure 12-09: Workflow Steps screen of the books-ms Jenkins workflow job

There’s much more to Jenkins workflow than what we presented here. Please spend some time with
the online tutorial¹⁹⁶ to get more familiar with it. As an exercise, add, for example, email notifications
to the script. While exploring JenkinsWorkflow, make sure to select the Snippet Generator checkbox
located below the script in the books-ms configuration¹⁹⁷ screen. It is a very useful way to discover
what each snippet does and how it can be used.

Even though Workflow provided a lot of benefits over deployment defined through the playbook,
managing the script through Ansible is still the sub-optimum solution. A better way would be to set
the deployment pipeline as a script inside the code repository together with the rest of the service

¹⁹⁶https://github.com/jenkinsci/workflow-plugin/blob/master/TUTORIAL.md
¹⁹⁷http://10.100.198.200:8080/job/books-ms/configure

https://github.com/jenkinsci/workflow-plugin/blob/master/TUTORIAL.md
http://10.100.198.200:8080/job/books-ms/configure
https://github.com/jenkinsci/workflow-plugin/blob/master/TUTORIAL.md
http://10.100.198.200:8080/job/books-ms/configure

Continuous Integration (CI), Delivery and Deployment (CD) Tools 218

code. That way, the team maintaining the service would be in full control of deployment. Besides
the need to have the workflow script inside the code repository, it would be highly beneficial if a
Jenkins job would be capable not only of handling the main branch but all of them or those we
select to be worth the trouble. Luckily, both of those improvements can be accomplished with the
Multibranch Workflow plugin and Jenkinsfile.

Â Setting Up Jenkins Multibranch Workflow and Jenkinsfile

The Jenkins Multibranch Workflow plugin adds a new job type that allows us to keep the Workflow
script inside a code repository. Such a job would create a subproject for each branch it finds in the
repository and expects to find Jenkinsfile in each of them. That allows us to keep theWorkflow script
inside the repository instead having it centralized inside Jenkins. That, in turn, enables developers
in charge of a project full freedom to define the deployment pipeline. Since each branch creates a
separate Jenkins project with a different Jenkinsfile, we can fine-tune the process depending on the
type of branch. For example, we might decide to define a full pipeline in the Jenkinsfile residing in
the master branch and choose to have only building and testing tasks defined for feature branches.
There’s more. Not only that Jenkins will detect all branches and keep that list updated, but it will
also remove a subproject if a corresponding branch is removed.

Let’s give Multibranch Workflow and Jenkinsfile a spin. We’ll start by opening the books-ms-
multibranch job¹⁹⁸. You’ll see the message stating that “this project scans branches in your SCM
and generate a job for each of them, but you have no branches configured”. Please click the
Branch Indexing and, then, Run Now links from the left-hand menu. Jenkins will index all branches
that match the filter we specified in the configuration. Once branches are indexed, it will create
subprojects for each and initiate building. Let’s explore the configuration of the job while building
is in progress.

Please open the books-ms-multibranch configuration¹⁹⁹ screen. The only important part of the job
configuration is Branch Sources. We used it to define the code repository. Please note the Advanced
button. When clicked, you’ll see that only branches that contain workflow in their names are
included. This setting is configured for two reasons. The first one is to demonstrate the option to
filter which branches will be included and, the other, to save you from building too many branches
inside the VM with such a limited capacity (the cd node has only 1 CPU and 1 GB of RAM).

By this time, branch indexing is probably finished. If you go back to the books-ms-multibranch
job²⁰⁰ screen, you’ll see that two subject projects matched the filter, jenkins-workflow and jenkins-
workflow-simple, and that Jenkins initiated builds of both. Since the cd node is configured to have
only one executor, the second build will wait until the first is finished.

Let’s take a look at the Jenkinsfile in those branches.

¹⁹⁸http://10.100.198.200:8080/job/books-ms-multibranch/
¹⁹⁹http://10.100.198.200:8080/job/books-ms-multibranch/configure
²⁰⁰http://10.100.198.200:8080/job/books-ms-multibranch/

http://10.100.198.200:8080/job/books-ms-multibranch/
http://10.100.198.200:8080/job/books-ms-multibranch/
http://10.100.198.200:8080/job/books-ms-multibranch/configure
http://10.100.198.200:8080/job/books-ms-multibranch/
http://10.100.198.200:8080/job/books-ms-multibranch/
http://10.100.198.200:8080/job/books-ms-multibranch/
http://10.100.198.200:8080/job/books-ms-multibranch/configure
http://10.100.198.200:8080/job/books-ms-multibranch/

Continuous Integration (CI), Delivery and Deployment (CD) Tools 219

The Jenkinsfile²⁰¹ in the jenkins-workflow²⁰² branch is as follows.

1 node("cd") {

2 def serviceName = "books-ms"

3 def prodIp = "10.100.198.201"

4 def proxyIp = "10.100.198.201"

5 def registryIpPort = "10.100.198.200:5000"

6

7 git url: "https://github.com/vfarcic/${serviceName}.git"

8 def flow = load "/data/scripts/workflow-util.groovy"

9 flow.provision("prod2.yml")

10 flow.buildTests(serviceName, registryIpPort)

11 flow.runTests(serviceName, "tests", "")

12 flow.buildService(serviceName, registryIpPort)

13 flow.deploy(serviceName, prodIp)

14 flow.updateProxy(serviceName, "prod")

15 flow.runTests(serviceName, "integ", "-e DOMAIN=http://${proxyIp}")

16 }

The script is almost the same as the one we defined earlier when we worked with Jenkins Workflow
embedded in the Jenkins job books-ms²⁰³. The only difference is that, this time, variables are defined
inside the script instead of using Jenkins properties. Since the project team is now in full charge of
the process, there is no need to externalize those variables. We accomplished the same result as
before but this time we moved the script to the code repository.

The Jenkinsfile²⁰⁴ in the jenkins-workflow-simple²⁰⁵ branch is a bit simpler.

1 node("cd") {

2 def serviceName = "books-ms"

3 def registryIpPort = "10.100.198.200:5000"

4

5 git url: "https://github.com/vfarcic/${serviceName}.git"

6 def flow = load "/data/scripts/workflow-util.groovy"

7 flow.buildTests(serviceName, registryIpPort)

8 flow.runTests(serviceName, "tests", "")

9 }

By inspecting the script, we can conclude that the developer who made that branch wants to benefit
from tests being run through Jenkins every time he pushes a commit. He removed deployment and

²⁰¹https://github.com/vfarcic/books-ms/blob/jenkins-workflow/Jenkinsfile
²⁰²https://github.com/vfarcic/books-ms/tree/jenkins-workflow
²⁰³http://10.100.198.200:8080/job/books-ms/
²⁰⁴https://github.com/vfarcic/books-ms/blob/jenkins-workflow-simple/Jenkinsfile
²⁰⁵https://github.com/vfarcic/books-ms/tree/jenkins-workflow-simple

https://github.com/vfarcic/books-ms/blob/jenkins-workflow/Jenkinsfile
https://github.com/vfarcic/books-ms/tree/jenkins-workflow
http://10.100.198.200:8080/job/books-ms/
https://github.com/vfarcic/books-ms/blob/jenkins-workflow-simple/Jenkinsfile
https://github.com/vfarcic/books-ms/tree/jenkins-workflow-simple
https://github.com/vfarcic/books-ms/blob/jenkins-workflow/Jenkinsfile
https://github.com/vfarcic/books-ms/tree/jenkins-workflow
http://10.100.198.200:8080/job/books-ms/
https://github.com/vfarcic/books-ms/blob/jenkins-workflow-simple/Jenkinsfile
https://github.com/vfarcic/books-ms/tree/jenkins-workflow-simple

Continuous Integration (CI), Delivery and Deployment (CD) Tools 220

post-deployment tests from it since the code is probably not ready to be deployed to production or
the policy is that only the code in the master or other selected branches is deployed. Once he merges
his code, a different script will be run and his changes will be deployed to production assuming that
he didn’t introduce any bugs, and the process was successful.

The introduction ofMultibranch Workflow and Jenkinsfile improved our deployment pipeline quite
a lot. We have a utility script located in the cd node so that others can reuse common functions.
From there on, we allowed every team to host their script inside the Jenkinsfile located in their
repository. Moreover, we gave them freedom not only to decide what is the proper way to build,
test, and deploy their services but also the flexibility to fine-tune the process based on each branch.

Final Thoughts

That was a very brief introduction to CI/CD tools and Jenkins in particular. Apart from the need to
have a CI/CD tool, Jenkins will be one of the cornerstones of the next chapter. We’ll use it as part
of the blue-green deployment toolset. If you are new to Jenkins, I suggest you take a break from
this book. Spend some time with it, read few tutorials and play around with different plugins. Time
invested in Jenkins is indeed a valuable investment that will be paid off quickly.

The introduction of Jenkins Workflow together with Docker and Multibranch plugins proved to
be invaluable additions to our toolbelt. We are using all the power Jenkins UI can offer while
still maintaining the flexibility that scripting provides for the deployment pipeline. Workflow DLS
and Groovy combine the best of both worlds. Through Workflow domain specific language (DSL),
we have syntax and functionality specifically tailored to serve deployment purposes. On the other
hand, Groovy itself provides everything we might need when DSL cuts short. At the same time, we
can access almost any functionality Jenkins offers. Docker addition to the Workflow provided few
helpful shortcuts and Multibranch together with Jenkinsfile allowed us to have the pipeline (or part
of it) applied to all branches (or those we select). All in all, we combined high level with low-level
tools into one powerful and easy to use combination.

The way we created Jenkins jobs through Ansible was far from great. We could have used one of the
Jenkins plugins like Template Project Plugin²⁰⁶ to create templates. However, none of them are truly
great and they all suffer from some deficiencies. Jenkins Enterprise Edition²⁰⁷ from CloudBees²⁰⁸
does have tools that solve templating and many other problems. However, all the examples we used
by now were based on open source software, and we’ll continue in the same fashion throughout the
rest of the book. That does not mean that paid solutions are not worth the investment. They often
are and should be evaluated. If you choose to use Jenkins and the size of your project or organization
warrants the investment, I recommend you evaluate Jenkins Enterprise Edition²⁰⁹. It brings a lot of
improvements over the open source version.

²⁰⁶https://wiki.jenkins-ci.org/display/JENKINS/Template+Project+Plugin
²⁰⁷https://www.cloudbees.com/products/cloudbees-jenkins-platform/enterprise-edition
²⁰⁸https://www.cloudbees.com/
²⁰⁹https://www.cloudbees.com/products/cloudbees-jenkins-platform/enterprise-edition

https://wiki.jenkins-ci.org/display/JENKINS/Template+Project+Plugin
https://www.cloudbees.com/products/cloudbees-jenkins-platform/enterprise-edition
https://www.cloudbees.com/
https://www.cloudbees.com/products/cloudbees-jenkins-platform/enterprise-edition
https://wiki.jenkins-ci.org/display/JENKINS/Template+Project+Plugin
https://www.cloudbees.com/products/cloudbees-jenkins-platform/enterprise-edition
https://www.cloudbees.com/
https://www.cloudbees.com/products/cloudbees-jenkins-platform/enterprise-edition

Continuous Integration (CI), Delivery and Deployment (CD) Tools 221

Given the tools we have at our disposal and the relatively uniform way to run our deployment steps,
the current solution is probably the best we could do, and it is time for us to move to the next subject
and explore the benefits we can obtain from blue-green deployment.

Before we move on, let’s destroy the VMs we used in this chapter.

1 exit

2

3 vagrant destroy -f

Blue-Green Deployment
Traditionally, we deploy a new release by replacing the current one. The old release is stopped, and
the new one is brought up in its place. The problem with this approach is the downtime occurring
from the moment the old release is stopped until the new one is fully operational. No matter how
quickly you try to do this process, there will be some downtime. That might be only a millisecond,
or it can last for minutes or, in extreme situations, even hours. Having monolithic applications
introduces additional problems like, for example, the need to wait a considerable amount of time
until the application is initialized. People tried to solve this issue in various ways, and most of them
used some variation of the blue-green deployment process. The idea behind it is simple. At any time,
one of the releases should be running meaning that, during the deployment process, we must deploy
a new release in parallel with the old one. The new and the old releases are called blue and green.

Figure 13-1: At any given moment, at least, one service release is up and running

We run one color as a current release, bring up the other color as a new release and, once it is fully
operational, switch all the traffic from the current to the new release. This switch is often made with
a router or a proxy service.

With the blue-green process, not only that we are removing the deployment downtime, but we are
also reducing the risk the deployment might introduce. No matter how well we tested our software
before it reached the production node(s), there is always a chance that something will go wrong.
When that happens, we still have the current version to rely on. There is no real reason to switch
the traffic to the new release until it is tested enough that any reasonable possibility of a failure due

222

Blue-Green Deployment 223

to some specifics of the production node is verified. That usually means that integration testing is
performed after the deployment and before the “switch” is made. Even if those verifications returned
false negatives and there is a failure after the traffic is redirected, we can quickly switch back to the
old release and restore the system to the previous state. We can roll back much faster than if we’d
need to restore the application from some backup or do another deployment.

If we combine the blue-green process with immutable deployments (through VMs in the past and
though containers today), the result is a very powerful, secure and reliable deployment procedure
that can be performed much more often. If architecture is based on microservices in conjunction
with containers, we don’t need two nodes to perform the procedure and can run both releases side
by side.

The significant challenges with this approach are databases. In many cases, we need to upgrade a
database schema in a way that it supports both releases and then proceed with the deployment.
The problems that might arise from this database upgrade are often related to the time that passes
between releases. When releases are done often, changes to the database schema tend to be small,
making it easier to maintain compatibility across two releases. If weeks, or months, passed between
releases, database changes could be so big that backward compatibility might be impossible or not
worthwhile doing. If we are aiming towards continuous delivery or deployment, the period between
two releases should be short or, if it isn’t, involve a relatively small amount of changes to the code
base.

The Blue-Green Deployment Process

The blue-green deployment procedure, when applied to microservices packed as containers, is as
follows.

The current release (for example blue), is running on the server. All traffic to that release is routed
through a proxy service. Microservices are immutable and deployed as containers.

Blue-Green Deployment 224

Figure 13-2: Immutable microservice deployed as a container

When a new release (for example green) is ready to be deployed, we run it in parallel with the
current release. This way we can test the new release without affecting the users since all the traffic
continues being sent to the current release.

Figure 13-3: New release of the immutable microservice deployed alongside the old release

Once we think that the new release is working as expected, we change the proxy service configura-
tion so that the traffic is redirected to that release. Most proxy services will let the existing requests
finish their execution using the old proxy configuration so that there is no interruption.

Blue-Green Deployment 225

Figure 13-4: Poxy is re-configured to point to the new release

When all the requests sent to the old release received responses, the previous version of a service
can be removed or, even better, stopped from running. If the latter option is used, rollback in case
of a failure of the new release will be almost instantaneous since all we have to do is bring the old
release back up.

Figure 13-5: The old release is removed

Equipped with the basic logic behind the blue-green process, we can try setting it up. We’ll start with
manual commands and, once we’re familiar with the practical part of the process, we’ll attempt to

Blue-Green Deployment 226

automate the procedure.

We’ll need the usual two nodes (cd and prod) to be up and running so let us create and provision
the VMs.

1 vagrant up cd prod

2

3 vagrant ssh cd

4

5 ansible-playbook /vagrant/ansible/prod2.yml \

6 -i /vagrant/ansible/hosts/prod

Manually Running the Blue-Green Deployment

Please note that we’ll go through the whole blue-green process within the context of what we tried
to accomplish earlier. We will not only run two releases in parallel but make sure that, among other
things, everything is thoroughly tested duringmultiple phases. Thatwill complicate the processmore
than if we follow the blue-green procedure assuming that everything works. Most implementations
do not take into account the need for testing before making the change to the proxy service. We
can, and will, do better than that. Another thing to note is that we’ll explore manual steps for you to
understand the process. Later on, we’ll automate everything using the tools we’re already familiar
with. I choose this approach in order to be sure that you grasp the complexity behind the combination
of the continuous deployment and the blue-green processes. By truly understanding how to do it
manually, you will be able to make an informed decision whether benefits of tools we’re will explore
throughout the rest of the book are greater than things they are missing.

We’ll start by downloading the Docker Compose and nginx configurations that we used in the
previous chapter.

1 mkdir books-ms

2

3 cd books-ms

4

5 wget https://raw.githubusercontent.com/vfarcic\

6 /books-ms/master/docker-compose.yml

7

8 wget https://raw.githubusercontent.com/vfarcic\

9 /books-ms/master/nginx-includes.conf

10

11 wget https://raw.githubusercontent.com/vfarcic\

12 /books-ms/master/nginx-upstreams-blue.ctmpl

13

14 wget https://raw.githubusercontent.com/vfarcic\

15 /books-ms/master/nginx-upstreams-green.ctmpl

Blue-Green Deployment 227

With all the configuration files available, let us deploy the first release. The tools we explored earlier
will come in handy. We’ll use Consul as the service registry, Registrator to register and de-register
containers, nginx as a proxy service and Consul Template to generate configurations and reload
nginx.

Deploying the Blue Release

Since, at this moment, we do not have the books-ms service up and running, we’ll call the first
release blue. The only thing we need to do for now is to make sure that the name of the container
we are about to run contains the word blue so that it does not collide with the next release. We’ll
be using Docker Compose to run containers so let us take a quick look at the targets defined in the
docker-compose.yml²¹⁰ file that we just downloaded (only relevant targets are presented).

1 ...

2 base:

3 image: 10.100.198.200:5000/books-ms

4 ports:

5 - 8080

6 environment:

7 - SERVICE_NAME=books-ms

8

9 app-blue:

10 extends:

11 service: base

12 environment:

13 - SERVICE_NAME=books-ms-blue

14 links:

15 - db:db

16

17 app-green:

18 extends:

19 service: base

20 environment:

21 - SERVICE_NAME=books-ms-green

22 links:

23 - db:db

24 ...

We cannot use the app target directly since we’ll be deploying two different targets (one for each
color) and in that way avoid them overriding each other. Also, we’ll want to differentiate them in

²¹⁰https://github.com/vfarcic/books-ms/blob/master/docker-compose.yml

https://github.com/vfarcic/books-ms/blob/master/docker-compose.yml
https://github.com/vfarcic/books-ms/blob/master/docker-compose.yml

Blue-Green Deployment 228

Consul as well, so the SERVICE_NAME environment variable should be unique. To accomplish that,
we have two new targets called app-blue and app-green. Those targets extend the base service in the
same way the app target extended it in previous chapters. The only difference between the targets
app-blue and app-green on one hand and the base on the other is (besides the name of the target)
the environment variable SERVICE_NAME.

With those two targets defined, we can deploy the blue release.

1 export DOCKER_HOST=tcp://prod:2375

2

3 docker-compose pull app-blue

4

5 docker-compose up -d app-blue

We pulled the latest version from the registry and brought it up as the blue release of the service.
Just to be on the safe side, let us quickly check whether the service is running and is registered in
Consul.

1 docker-compose ps

2

3 curl prod:8500/v1/catalog/service/books-ms-blue \

4 | jq '.'

The output of both commands combined is as follows.

1 Name Command State Ports

2 --

3 booksms_app-blue_1 /run.sh Up 0.0.0.0:32768->8080/tcp

4 booksms_db_1 /entrypoint.sh mongod Up 27017/tcp

5 ...

6 [

7 {

8 "ModifyIndex": 38,

9 "CreateIndex": 38,

10 "Node": "prod",

11 "Address": "10.100.198.201",

12 "ServiceID": "prod:booksms_app-blue_1:8080",

13 "ServiceName": "books-ms-blue",

14 "ServiceTags": [],

15 "ServiceAddress": "10.100.198.201",

16 "ServicePort": 32768,

17 "ServiceEnableTagOverride": false

18 }

19]

Blue-Green Deployment 229

The first command showed that both the app-blue and the db containers are running. The second
command displayed the details of the books-ms-blue service registered in Consul. Now we have the
first release of our service up and running but still not integrated with nginx and, therefore, not
accessible through the port 80. We can confirm that by sending a request to the service.

1 curl -I prod/api/v1/books

The output is as follows.

1 HTTP/1.1 404 Not Found

2 Server: nginx/1.9.9

3 Date: Sun, 03 Jan 2016 20:47:59 GMT

4 Content-Type: text/html

5 Content-Length: 168

6 Connection: keep-alive

The request response is the 404 Not Found error message proving that we are yet to configure the
proxy.

Figure 13-6: The blue container is deployed

Integrating the Blue Release

We can integrate the service in a similar way as we did before. The only difference is in the target
of the service we registered in Consul.

Let us start by taking a look at the nginx Consul template nginx-upstreams-blue.ctmpl²¹¹ that we
downloaded earlier.

²¹¹https://github.com/vfarcic/books-ms/blob/master/nginx-upstreams-blue.ctmpl

https://github.com/vfarcic/books-ms/blob/master/nginx-upstreams-blue.ctmpl
https://github.com/vfarcic/books-ms/blob/master/nginx-upstreams-blue.ctmpl

Blue-Green Deployment 230

1 upstream books-ms {

2 {{range service "books-ms-blue" "any"}}

3 server {{.Address}}:{{.Port}};

4 {{end}}

5 }

The service name is books-ms-blue and we can proceed by running Consul Template that will
generate the final nginx upstreams configuration.

1 consul-template \

2 -consul prod:8500 \

3 -template "nginx-upstreams-blue.ctmpl:nginx-upstreams.conf" \

4 -once

The command run Consul Template that produced the nginx upstreams configuration file and
reloaded the service.

Let’s check whether the configuration file was indeed created correctly.

1 cat nginx-upstreams.conf

The output is as follows.

1 upstream books-ms {

2 server 10.100.198.201:32769;

3 }

Finally, all that’s left is to copy the configuration files to the prod server and reload nginx. When
asked, please use vagrant as the password.

1 scp nginx-includes.conf \

2 prod:/data/nginx/includes/books-ms.conf

3

4 scp nginx-upstreams.conf \

5 prod:/data/nginx/upstreams/books-ms.conf

6

7 docker kill -s HUP nginx

We copied the two configuration files to the server and reloaded nginx by sending the HUP signal.

Let’s check whether our service is indeed integrated with the proxy.

Blue-Green Deployment 231

1 curl -I prod/api/v1/books

The output is as follows.

1 HTTP/1.1 200 OK

2 Server: nginx/1.9.9

3 Date: Sun, 03 Jan 2016 20:51:12 GMT

4 Content-Type: application/json; charset=UTF-8

5 Content-Length: 2

6 Connection: keep-alive

7 Access-Control-Allow-Origin: *

This time, the response code is 200 OK indicating that the service indeed responded to the request.

Figure 13-7: The blue container integrated with the proxy service

We finished the simplest scenario by deploying the first (blue) release. As you will soon see, the
process of deploying the second (green) release will not be much different.

Deploying the Green Release

Deployment of the second (green) release can be done using the same steps as those we executed for
the first (blue) release. The only difference is that this time we’ll deploy the books-ms-green instead
of the books-ms-blue target.

Unlike the previous deployment, this time, the new release (green) will run in parallel with the
current release (blue).

Blue-Green Deployment 232

1 docker-compose pull app-green

2

3 docker-compose up -d app-green

The new release has been pulled and run. We can confirm that by running the docker-compose ps

command.

1 docker-compose ps

The result is as follows.

1 Name Command State Ports

2 ---

3 booksms_app-blue_1 /run.sh Up 0.0.0.0:32769->8080/tcp

4 booksms_app-green_1 /run.sh Up 0.0.0.0:32770->8080/tcp

5 booksms_db_1 /entrypoint.sh mongod Up 27017/tcp

The output shows that the two services (blue and green) are running in parallel. Similarly, we can
confirm that both releases are registered in Consul.

1 curl prod:8500/v1/catalog/services \

2 | jq '.'

The output is as follows.

1 {

2 "dockerui": [],

3 "consul": [],

4 "books-ms-green": [],

5 "books-ms-blue": []

6 }

As before, we can also check the details of the newly deployed service.

1 curl prod:8500/v1/catalog/service/books-ms-green \

2 | jq '.'

Finally, we can confirm that the old release is still accessible through the proxy.

Blue-Green Deployment 233

1 curl -I prod/api/v1/books

2

3 docker logs nginx

The output of the last command should be similar to the following (timestamps are removed for
brevity).

1 "GET /api/v1/books HTTP/1.1" 200 201 "-" "curl/7.35.0" "-" 10.100.198.201:32769

2 "GET /api/v1/books HTTP/1.1" 200 201 "-" "curl/7.35.0" "-" 10.100.198.201:32769

Please keep in mind that the port of the service deployed on your computer might be different than
the one from the example above.

The output of nginx logs should display that the request we made is redirected to the port of the
blue release. That can be observed by checking that the last request went to the same port as the one
we made before deploying the green release.

Figure 13-8: The green container is deployed in parallel with the blue

Right now, we have two releases (blue and green) running in parallel and the proxy service is still
redirecting all requests to the old release (blue). The next step should be to test the new release before
we change the proxy configuration. We’ll skip testing until we reach the automation part and dive
straight into the integration of the green release with nginx.

Integrating the Green Release

The process to integrate the second (green) release with the proxy service is similar to the one we
already did.

Blue-Green Deployment 234

1 consul-template \

2 -consul prod:8500 \

3 -template "nginx-upstreams-green.ctmpl:nginx-upstreams.conf" \

4 -once

5

6 scp nginx-upstreams.conf \

7 prod:/data/nginx/upstreams/books-ms.conf

8

9 docker kill -s HUP nginx

We can send a request to the proxy and check its logs to see whether it truly points to the new
(green) release.

1 curl -I prod/api/v1/books

2

3 docker logs nginx

The nginx logs should be similar to the following (timestamps are removed for brevity).

1 "GET /api/v1/books HTTP/1.1" 200 201 "-" "curl/7.35.0" "-" 10.100.198.201:32769

2 "GET /api/v1/books HTTP/1.1" 200 201 "-" "curl/7.35.0" "-" 10.100.198.201:32769

3 "GET /api/v1/books HTTP/1.1" 200 201 "-" "curl/7.35.0" "-" 10.100.198.201:32770

It is obvious that the last request went to a different port (32770) than those we made before (32769).
We switched the proxy from the blue to the green release. There was no downtime during this
process since we waited until the new release is fully up and running before changing the proxy.
Also, nginx is intelligent enough not to apply the configuration change to all requests but only to
those made after the reload. In other words, all requests started before the reload continued using
the old release while all those initiated afterward were sent to the new release. We managed to
accomplish zero-downtime with minimum effort and without resorting to any new tool. We used
nginx as a proxy and Consul (together with Registrator and Consul Template) to store and retrieve
service information.

Blue-Green Deployment 235

Figure 13-9: The green container integrated with the proxy service

As a result of what we did by now, the new release was deployed in parallel with the old one and
proxy was changed to point to that new release. Now we can safely remove the old release.

Removing the Blue Release

Removing a release is easy, and we did it many times before. All we have to do is make sure that
the correct target is used when running the stop command.

1 docker-compose stop app-blue

2

3 docker-compose ps

The first command stopped the blue release, and the second listed all processes specified as Docker
Compose targets. The output of the command that list processes is as follows.

1 Name Command State Ports

2 --

3 booksms_app-blue_1 /run.sh Exit 137

4 booksms_app-green_1 /run.sh Up 0.0.0.0:32770->8080/tcp

5 booksms_db_1 /entrypoint.sh mongod Up 27017/tcp

Please note that the state of the booksms_app-blue_1 is Exit 137. Only the green release and the
database containers are running.

We can also confirm the same by sending a request to Consul.

1 curl prod:8500/v1/catalog/services | jq '.'

The Consul response is as follows.

Blue-Green Deployment 236

1 {

2 "dockerui": [],

3 "consul": [],

4 "books-ms-green": []

5 }

Registrator detected the removal of the blue release and removed it from Consul.

We should also check that the green release is still integrated with the proxy service.

1 curl -I prod/api/v1/books

As expected, nginx is still sending all requests to the green release and our work is done (for now).
To summarize, we deployed a new release in parallel with the old one, changed the proxy service to
point to the new release and, once all requests invoked with the old release received their responses,
removed the old release.

Figure 13-10: The blue container is removed

The only thing left, before we proceed with the automation, is to find a better way to discover which
release to deploy (blue or green). While running manually, we can easily find that information by
simply listing docker processes or services registered in Consul and observing which color is not
running. The automated deployment will require a bit different approach.We should discover which
release to run.

Let us remove the containers and start over.

1 docker-compose stop

2

3 docker-compose rm -f

Blue-Green Deployment 237

Discovering Which Release to Deploy and Rolling Back

One way to know which color to deploy next would be to store the deployed color to Consul and
use that information for the next deployment. In other words, we should have two processes; color
discovery and color registration.

Let’s think about use cases of the color discovery. There are three possible combinations

1. We are deploying the first release, and no color is stored in the registry.
2. The blue release is running and stored in the registry.
3. The green release is running and stored in the registry.

We can reduce those combinations to two. If blue color is registered, the next one is green. Otherwise,
the next color is blue covering both the case when the current color is green or when no color is
registered (when service has never been deployed). With this strategy, we can create the following
bash script (please do not run it yet).

1 #!/usr/bin/env bash

2

3 SERVICE_NAME=$1

4 PROD_SERVER=$2

5

6 CURR_COLOR=`curl \

7 http://$PROD_SERVER:8500/v1/kv/$SERVICE_NAME/color?raw`

8

9 if ["$CURR_COLOR" == "blue"]; then

10 echo "green"

11 else

12 echo "blue"

13 fi

Since we could use the same script for many services, it accepts two arguments; the name of the
service we are about to deploy and the destination (production) server. Then, we query Consul on
the production server and put the result into the CURR_COLOR variable. That is followed by a
simple if/else statement that sends the green or the blue string to STDOUT. With such a script, we
can easily retrieve the color we should use to deploy a service.

Let’s create the script.

Blue-Green Deployment 238

1 echo '#!/usr/bin/env bash

2

3 SERVICE_NAME=$1

4 PROD_SERVER=$2

5

6 CURR_COLOR=`curl \

7 http://$PROD_SERVER:8500/v1/kv/$SERVICE_NAME/color?raw`

8

9 if ["$CURR_COLOR" == "blue"]; then

10 echo "green"

11 else

12 echo "blue"

13 fi

14 ' | tee get-color.sh

15

16 chmod +x get-color.sh

We created the get-color.sh script and gave it executable permissions. Now we can use it to retrieve
the next color and repeat the procedure we practiced before.

1 NEXT_COLOR=`./get-color.sh books-ms prod`

2

3 export DOCKER_HOST=tcp://prod:2375

4

5 docker-compose pull app-$NEXT_COLOR

6

7 docker-compose up -d app-$NEXT_COLOR

The only difference when compared with the commands we run earlier, is that we’re using the
NEXT_COLOR variable instead of hard-coded values blue and green. As a result, we have the first
release (blue) up and running.

Blue-Green Deployment 239

Figure 13-11: The color of the current release is retrieved from Consul

Let’s use this opportunity to have a short discussion about testing. On one hand, we want to test as
much as possible before we change the proxy to point to the new release. On the other hand, we still
need to make one round of tests, after the proxy is changed, to be sure that everything (including
the change of the proxy) is running as expected. We’ll call those two types pre-integration tests and
post-integration tests. Keep in mind that their scope should be limited to those cases that could not
be covered with pre-deployment tests. In the case of the (relatively small) books-ms service, it should
be enough if pre-integration tests verify that the service can communicate with the database. In such
a case, the only thing left to check after the integration with the proxy service, is that nginx has been
reconfigured correctly.

Let’s start with pre-integration tests. We’ll simulate testing using curl. Since the proxy is still not
changed to point to the newly deployed service, we need to find out what the port the newly released
service is. We can find the port from Consul and create a script similar to the get-color.sh. The script
can be created with the following command.

1 echo '#!/usr/bin/env bash

2

3 SERVICE_NAME=$1

4 PROD_SERVER=$2

5 COLOR=$3

6

7 echo `curl \

8 $PROD_SERVER:8500/v1/catalog/service/$SERVICE_NAME-$COLOR \

9 | jq ".[0].ServicePort"`

10 ' | tee get-port.sh

11

12 chmod +x get-port.sh

This time, we created the script named get-port.sh with three arguments; the name of the service,
the address of the production server, and the color. With those three arguments, we are querying

Blue-Green Deployment 240

the information from Consul and sending the result to STDOUT.

Let’s try it out.

1 NEXT_PORT=`./get-port.sh books-ms prod $NEXT_COLOR`

2

3 echo $NEXT_PORT

The output will vary from case to case depending on the random port Docker assigned to our service.
With the port stored inside the variable, we can test the service before integrating it with the proxy.

1 curl -I prod:$NEXT_PORT/api/v1/books

Service returned the status code 200 OK so we can proceed with the integration in a similar way we
did before. When asked, please use vagrant as the password.

1 consul-template \

2 -consul prod:8500 \

3 -template "nginx-upstreams-$NEXT_COLOR.ctmpl:nginx-upstreams.conf" \

4 -once

5

6 scp nginx-upstreams.conf \

7 prod:/data/nginx/upstreams/books-ms.conf

8

9 docker kill -s HUP nginx

With the service integrated, we can test it again but this time without the port.

1 curl -I prod/api/v1/books

Finally, we should stop one of the containers. Which one should be stopped depends on the testing
results. If pre-integration tests failed, we should stop the new release. There is no need to do anything
with the proxy since, at this time, it is still sending all requests to the old release. On the other hand,
if post-integration tests failed, not only that the new release should be stopped, but we should also
revert changes to the proxy service so that all traffic goes back to the old release. At this moment we
won’t go through all the paths we might need to take in case of tests failures. That will be reserved
for the automation that we will explore soon. For now, we’ll put the color to Consul registry and
stop the old release.

Blue-Green Deployment 241

1 curl -X PUT -d $NEXT_COLOR \

2 prod:8500/v1/kv/books-ms/color

3

4 CURR_COLOR=`./get-color.sh books-ms prod`

5

6 docker-compose stop app-$CURR_COLOR

This set of commands put the new color to the registry, obtained the next color that should be
equivalent to the color of the old release, and, finally, stopped the old release. Since we started over
and this is the first release, there was no old release to be stopped. Never the less, the next time we
run the process, the old release will indeed be stopped.

Figure 13-12: The color of the current release is sent to Consul

With this, we concluded the manual process of blue-green deployment. It is done in a way that it
can easily be automated. Before we move forward, let’s run all those commands few more times and
observe that the color changes from blue to green, from green to blue and so on. All the commands
grouped together are as follows.

1 NEXT_COLOR=`./get-color.sh books-ms prod`

2

3 docker-compose pull app-$NEXT_COLOR

4

5 docker-compose up -d app-$NEXT_COLOR

6

7 NEXT_PORT=`./get-port.sh books-ms prod $NEXT_COLOR`

8

9 consul-template \

10 -consul prod:8500 \

11 -template "nginx-upstreams-$NEXT_COLOR.ctmpl:nginx-upstreams.conf" \

12 -once

Blue-Green Deployment 242

13

14 scp nginx-upstreams.conf \

15 prod:/data/nginx/upstreams/books-ms.conf

16

17 docker kill -s HUP nginx

18

19 curl -I prod/api/v1/books

20

21 curl -X PUT -d $NEXT_COLOR \

22 prod:8500/v1/kv/books-ms/color

23

24 CURR_COLOR=`./get-color.sh books-ms prod`

25

26 docker-compose stop app-$CURR_COLOR

27

28 curl -I prod/api/v1/books

29

30 docker-compose ps

The last command showed Docker processes. You will see that, after the first run, the green release
will be running, and the blue will be in Exited state, and then, after the next run, the blue release
will be running, and the green will be in the Exited state, and so on. We managed to deploy new
releases without any downtime. The only exception is if post-integration tests fail, which is very
unlikely to happen since the only cause for that would be a failure of the proxy service itself due to
the wrong configuration. Since the process will soon be fully automated, such a thing is indeed very
unlikely to happen. Another reason for post-integration tests to fail would be if proxy service itself
fails. The only way to remove this possibility is to have multiple instances of the proxy service (out
of the scope of this book).

That being said, let’s see the nginx logs.

1 docker logs nginx

You’ll notice that each request we made was sent to a different port meaning that a new container
was indeed deployed and running on a new port.

Now, after all those commands and experiments, we are ready to start working on the automation
of the blue-green deployment procedure.

We’ll destroy the virtual machines and start over to be sure that everything works correctly.

Blue-Green Deployment 243

1 exit

2

3 vagrant destroy -f

Automating the Blue-Green Deployment with Jenkins
Workflow

We’ll start by creating the VMs, provisioning the prod node, and bringing up Jenkins, our deployment
tool of choice.

1 vagrant up cd prod

2

3 vagrant ssh cd

4

5 ansible-playbook /vagrant/ansible/prod2.yml \

6 -i /vagrant/ansible/hosts/prod

7

8 ansible-playbook /vagrant/ansible/jenkins-node.yml \

9 -i /vagrant/ansible/hosts/prod

10

11 ansible-playbook /vagrant/ansible/jenkins.yml \

12 -c local

Since it will take a couple of minutes until everything is set, let us discuss what should be automated
and how. We are already familiar with the Jenkins Workflow. It served us well, so there is no real
reason to change the tool at this time. We’ll use it to automate the blue-green deployment procedure.
The flow will have quite a lot of steps so we’ll break them into functions to digest the process more
easily and, at the same time, to extend our workflow utilities script. More detailed discussion and
implementation of those functions follow.

Blue-Green Deployment 244

Figure 13-13: Blue-green deployment automation flow

Blue-Green Deployment Role

We’ll use the Multibranch Workflow jenkins job books-ms-blue-green²¹². It filters branches of the
vfarcic/books-ms²¹³ repository so that only those containing blue-green in their names are included.

Since the first run might take a considerable amount of time, let’s index branches so that Jenkins
can run the subprojects while we explore the script.

Please open the Jenkins Multibranch Workflow job books-ms-blue-green²¹⁴, click the Branch
Indexing and, then, Run Now links from the left-hand menu. Once branches are indexed, Jenkins
will find that the blue-green branch matches the filter set inside the job, create the subproject with
the same name and start running it. The indexing status can be seen in the master node executor
located in the bottom-left part of the screen.

²¹²http://10.100.198.200:8080/job/books-ms-blue-green/
²¹³https://github.com/vfarcic/books-ms/
²¹⁴http://10.100.198.200:8080/job/books-ms-blue-green/

http://10.100.198.200:8080/job/books-ms-blue-green/
https://github.com/vfarcic/books-ms/
http://10.100.198.200:8080/job/books-ms-blue-green/
http://10.100.198.200:8080/job/books-ms-blue-green/
https://github.com/vfarcic/books-ms/
http://10.100.198.200:8080/job/books-ms-blue-green/

Blue-Green Deployment 245

Figure 13-14: The Jenkins Multibranch Workflow job books-ms-blue-green with the blue-green subproject

We’ll leave Jenkins running the build and explore the Jenkinsfile²¹⁵ inside the blue-green branch²¹⁶.

1 node("cd") {

2 def serviceName = "books-ms"

3 def prodIp = "10.100.198.201"

4 def proxyIp = "10.100.198.201"

5 def proxyNode = "prod"

6 def registryIpPort = "10.100.198.200:5000"

7

8 def flow = load "/data/scripts/workflow-util.groovy"

9

10 git url: "https://github.com/vfarcic/${serviceName}.git"

11 flow.provision("prod2.yml")

12 flow.buildTests(serviceName, registryIpPort)

13 flow.runTests(serviceName, "tests", "")

14 flow.buildService(serviceName, registryIpPort)

15

16 def currentColor = flow.getCurrentColor(serviceName, prodIp)

17 def nextColor = flow.getNextColor(currentColor)

18

19 flow.deployBG(serviceName, prodIp, nextColor)

20 flow.runBGPreIntegrationTests(serviceName, prodIp, nextColor)

21 flow.updateBGProxy(serviceName, proxyNode, nextColor)

22 flow.runBGPostIntegrationTests(serviceName, prodIp, proxyIp, proxyNode, curr\

23 entColor, nextColor)

24 }

²¹⁵https://github.com/vfarcic/books-ms/blob/blue-green/Jenkinsfile
²¹⁶https://github.com/vfarcic/books-ms/tree/blue-green

https://github.com/vfarcic/books-ms/blob/blue-green/Jenkinsfile
https://github.com/vfarcic/books-ms/tree/blue-green
https://github.com/vfarcic/books-ms/blob/blue-green/Jenkinsfile
https://github.com/vfarcic/books-ms/tree/blue-green

Blue-Green Deployment 246

The file starts with the declaration of a few variables followed by the load of the workflow-
util.groovy²¹⁷ script. That is followed with invocations of the functions that provision the envi-
ronments, build and run tests, and build the service. Up until now, the script is the same as the one
we explored in the previous chapter.

The first new additions are invocations of the utilities functions²¹⁸ getCurrentColor and getNextColor
and assignment of values they return to the currentColor and the nextColor variables. The functions
are as follows.

1 def getCurrentColor(serviceName, prodIp) {

2 try {

3 return sendHttpRequest("http://${prodIp}:8500/v1/kv/${serviceName}/color\

4 ?raw")

5 } catch(e) {

6 return ""

7 }

8 }

9

10 def getNextColor(currentColor) {

11 if (currentColor == "blue") {

12 return "green"

13 } else {

14 return "blue"

15 }

16 }

As you can see, those functions follow the same logic as the onewe practicedwithmanual commands
but, this time, translated to Groovy. The current color is retrieved from Consul and used to deduce
the next color we should deploy.

Now that we know what the currently running color is as well as what the next color should be, we
can deploy the new release using the deployBG. The function is as follows.

1 def deployBG(serviceName, prodIp, color) {

2 stage "Deploy"

3 withEnv(["DOCKER_HOST=tcp://${prodIp}:2375"]) {

4 sh "docker-compose pull app-${color}"

5 sh "docker-compose -p ${serviceName} up -d app-${color}"

6 }

7 }

²¹⁷https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
²¹⁸https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy

Blue-Green Deployment 247

We created the DOCKER_HOST environment variable pointing to Docker CLI running on the
production node. The variable scope is limited to the commands within its curly braces. Inside
them, we are pulling the latest release and running it through Docker Compose. The only important
difference when, compared with the Jenkinsfile script we explored in the previous chapter, is the
dynamic generation of the target through the color variable. The target that will be used depends
on the actual value of the nextColor used to invoke this function.

At this point in the script, a new release is deployed but still not integrated with the proxy service.
The users of our service would still be using the old release thus giving us the opportunity to test the
newly deployed version before making it publicly available. We’ll call them pre-integration tests.
They are run by invoking the utility function runBGPreIntegrationTests located in the workflow-
util.groovy²¹⁹ script.

1 def runBGPreIntegrationTests(serviceName, prodIp, color) {

2 stage "Run pre-integration tests"

3 def address = getAddress(serviceName, prodIp, color)

4 try {

5 runTests(serviceName, "integ", "-e DOMAIN=http://${address}")

6 } catch(e) {

7 stopBG(serviceName, prodIp, color);

8 error("Pre-integration tests failed")

9 }

10 }

The function starts by retrieving the address of the newly deployed service from Consul. This
retrieval is accomplished through invocation of the getAddress function. Please consult the details
of the function by examining the workflow-util.groovy²²⁰ script. Next, we run the tests inside a
try/catch block. Since the new release is still not integrated with nginx and, therefore, not accessible
through the port 80, we are passing the address of the release as an environment variable DOMAIN.
If the execution of tests fails, the script will jump to the catch block and call the stopBG function
that will stop the new release. Since our servers are running [Registrator], once the new release is
stopped, its data will be removed from Consul. There’s nothing else to be done. Proxy service will
continue pointing to the old release, and, through it, our users will continue using the old version
of our service that is proven to work correctly. Please consult the workflow-util.groovy²²¹ script to
see details of the stopBG function.

If the pre-integration tests passed, we are invoking the updateBGProxy function that updates the
proxy service thus making our new release available to our users. The function is as follows.

²¹⁹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
²²⁰https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
²²¹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy

Blue-Green Deployment 248

1 def updateBGProxy(serviceName, proxyNode, color) {

2 stage "Update proxy"

3 stash includes: 'nginx-*', name: 'nginx'

4 node(proxyNode) {

5 unstash 'nginx'

6 sh "sudo cp nginx-includes.conf /data/nginx/includes/${serviceName}.conf"

7 sh "sudo consul-template \

8 -consul localhost:8500 \

9 -template \"nginx-upstreams-${color}.ctmpl:/data/nginx/upstreams/${s\

10 erviceName}.conf:docker kill -s HUP nginx\" \

11 -once"

12 sh "curl -X PUT -d ${color} http://localhost:8500/v1/kv/${serviceName}/c\

13 olor"

14 }

15 }

The major difference, when compared with the updateProxy function we used in the previous
chapter, is the usage of nginx-upstreams-${color}.ctmpl as the name of the template. Depending
on the value we pass to the function, nginx-upstreams-blue.ctmpl or nginx-upstreams-green.ctmpl
will be used. As an additional instruction, we are sending a request to Consul to store the color
related to the newly deployed release. The rest of this function is the same as the updateProxy.

Finally, now that the new release is deployed, and the proxy service has been reconfigured, we are
doing another round of testing to confirm that the integration with the proxy was indeed correct.
We’re doing that by invoking the runBGPostIntegrationTests function located in the workflow-
util.groovy²²² script.

1 def runBGPostIntegrationTests(serviceName, prodIp, proxyIp, proxyNode, currentCo\

2 lor, nextColor) {

3 stage "Run post-integration tests"

4 try {

5 runTests(serviceName, "integ", "-e DOMAIN=http://${proxyIp}")

6 } catch(e) {

7 if (currentColor != "") {

8 updateBGProxy(serviceName, proxyNode, currentColor)

9 }

10 stopBG(serviceName, prodIp, nextColor);

11 error("Post-integration tests failed")

12 }

13 stopBG(serviceName, prodIp, currentColor);

14 }

²²²https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy

Blue-Green Deployment 249

We start by running integration tests that are, this time, using the public domain that points to the
proxy. If tests fail, we are reverting the changes to the proxy service by invoking the updateBGProxy
function. By passing the currentColor as the variable, updateBGProxywill reconfigure nginx to work
with the old release of the service. The second instruction in case of a failure of tests is to stop the
new release by invoking the stopBG function with nextColor. On the other hand, if all tests passed,
we are stopping the old release.

If you are new to Groovy, this script might have been overwhelming. However, with a little bit of
practice, you’ll see that, for our purposes, Groovy is very simple and with the addition of Jenkins
Workflow DSL, many things are made even easier.

It is worth noting that the Workflow plugin is restrictive. For security reasons, invocation of some
Groovy classes and functions needs to be approved. I already did that for you as part of the
provisioning and configuration process defined through the jenkins.yml²²³ Ansible playbook. If
you’d like to see the end result or would need to make new approvals, please open In-process Script
Approval²²⁴ screen located inside Manage Jenkins. At first, those security restrictions might seem
over-the-top, but the reasoning behind them is essential. Since Workflow scripts can access almost
any part of the Jenkins platform, letting anything run inside it might have very severe consequences.
For that reason, some instructions are allowed by default while others need to be approved. If
a Workflow script fails due to this restriction, you’ll see a new entry in the In-process Script
Approval²²⁵ screen waiting for your approval (or disapproval). The XML behind those approvals
is located in the /data/jenkins/scriptApproval.xml file.

Running the Blue-Green Deployment

Hopefully, by this time, the subproject finished running. You can monitor the process by opening
blue-green subproject Console screen²²⁶. Once the first run of the subproject is finished, we can
manually confirm that everything run correctly. We’ll use this opportunity to showcase few ps
arguments we haven’t used. The first one will be –filter that can be used to (you guessed it) filter
containers returned with the ps command. The second one is –format. Since the standard output of
the ps command can be very long, we’ll use it to retrieve only names of the containers.

1 export DOCKER_HOST=tcp://prod:2375

2

3 docker ps -a --filter name=books --format "table {{.Names}}"

The output of the ps command is as follows.

²²³https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/jenkins.yml
²²⁴http://10.100.198.200:8080/scriptApproval/
²²⁵http://10.100.198.200:8080/scriptApproval/
²²⁶http://10.100.198.200:8080/job/books-ms-blue-green/branch/blue-green/lastBuild/console

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/jenkins.yml
http://10.100.198.200:8080/scriptApproval/
http://10.100.198.200:8080/scriptApproval/
http://10.100.198.200:8080/scriptApproval/
http://10.100.198.200:8080/scriptApproval/
http://10.100.198.200:8080/job/books-ms-blue-green/branch/blue-green/lastBuild/console
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/jenkins.yml
http://10.100.198.200:8080/scriptApproval/
http://10.100.198.200:8080/scriptApproval/
http://10.100.198.200:8080/job/books-ms-blue-green/branch/blue-green/lastBuild/console

Blue-Green Deployment 250

1 NAMES

2 booksms_app-blue_1

3 booksms_db_1

We can see that the blue release has been deployed together with the linked database. We can also
confirm that the service has been stored in Consul.

1 curl prod:8500/v1/catalog/services | jq '.'

2

3 curl prod:8500/v1/catalog/service/books-ms-blue | jq '.'

The combined output of the two requests to Consul is as follows.

1 {

2 "dockerui": [],

3 "consul": [],

4 "books-ms-blue": []

5 }

6 ...

7 [

8 {

9 "ModifyIndex": 461,

10 "CreateIndex": 461,

11 "Node": "prod",

12 "Address": "10.100.198.201",

13 "ServiceID": "prod:booksms_app-blue_1:8080",

14 "ServiceName": "books-ms-blue",

15 "ServiceTags": [],

16 "ServiceAddress": "10.100.198.201",

17 "ServicePort": 32780,

18 "ServiceEnableTagOverride": false

19 }

20]

The books-ms-blue has been registered as a service besides the dockerui and consul. The second
output shows all the details of the service.

Finally, we should verify that the color has been stored in Consul and that the service itself is indeed
integrated with nginx.

Blue-Green Deployment 251

1 curl prod:8500/v1/kv/books-ms/color?raw

2

3 curl -I prod/api/v1/books

The first command returned blue, and the status of the request to the service through the proxy is
200 OK. Everything seems to be working correctly.

Please run the job a couple of more times by opening the books-ms-blue-green²²⁷ job and clicking
the Schedule a build for blue-green icon located on the right-hand side.

You can monitor the process by opening the blue-green subproject Console screen²²⁸.

Figure 13-15: The Jenkins blue-green subproject Console screen

If you repeat the manual verifications, you’ll notice that the second time the green release will be
running, and the blue will be stopped. The third run will invert colors and the blue release will be

²²⁷http://10.100.198.200:8080/job/books-ms-blue-green/
²²⁸http://10.100.198.200:8080/job/books-ms-blue-green/branch/blue-green/lastBuild/console

http://10.100.198.200:8080/job/books-ms-blue-green/
http://10.100.198.200:8080/job/books-ms-blue-green/branch/blue-green/lastBuild/console
http://10.100.198.200:8080/job/books-ms-blue-green/
http://10.100.198.200:8080/job/books-ms-blue-green/branch/blue-green/lastBuild/console

Blue-Green Deployment 252

runningwhile the greenwill be stopped. The correct color will be stored in Consul, proxy service will
always redirect requests to the latest release, and there will be no downtime during the deployment
process.

Even though we are reaching the end of this chapter, we are not finished practicing the blue-
green deployment. Even though we will change the way we are running the procedure, it will be
the integral part of a couple of more practices we’ll explore throughout the rest of this book. We
accomplished zero-downtime deployments, but there is still a lot of work left before we reach zero-
downtime system. The fact that our current process does not produce downtime during deployments
does not mean that the whole system is fault tolerant.

We reached a significant milestone, yet there are still a lot of obstacles left to overcome. One of them
is clustering and scaling. The solution we have works well on a single server. We could easily extend
it to support a fewmore, maybe even ten. However, the bigger the number of our servers, the greater
the need to look for a better way to manage clustering and scaling. That will be the subject of the
next chapter. Until then, let us destroy the environments we’ve been using so that we can start fresh.

1 exit

2

3 vagrant destroy -f

Clustering And Scaling Services
Organizations which design systems … are constrained to produce designs which are copies of the

communication structures of these organizations

– M. Conway

Many will tell you that they have a scalable system. After all, scaling is easy. Buy a server,
install WebLogic (or whichever other monster application server you’re using) and deploy your
applications. Then wait for a few weeks until you discover that everything is so “fast” that you can
click a button, have some coffee, and, by the time you get back to your desk, the result will be waiting
for you. What do you do? You scale. You buy few more servers, install your monster applications
servers and deploy your monster applications on top of them. Which part of the system was the
bottleneck? Nobody knows. Why did you duplicate everything? Because you must. And then some
more time passes, and you continue scaling until you run out of money and, simultaneously, people
working for you go crazy. Today we do not approach scaling like that. Today we understand that
scaling is about many other things. It’s about elasticity. It’s about being able to quickly and easily
scale and de-scale depending on variations in your traffic and growth of your business, and that,
during that process, you should not go bankrupt. It’s about the need of almost every company to
scale their business without thinking that IT department is a liability. It’s about getting rid of those
monsters.

Scalability

Let us, for amoment take a step back and discuss whywewant to scale applications. Themain reason
is high availability. Why do we want high availability? We want it because we want our business to
be available under any load. The bigger the load, the better (unless you are under DDoS). It means
that our business is booming. With high availability our users are happy. We all want speed, and
many of us simply leave the site if it takes too long to load. We want to avoid having outages because
every minute our business is not operational can be translated into a money loss. What would you
do if an online store is not available? Probably go to another. Maybe not the first time, maybe not
the second, but, sooner or later, you would get fed up and switch it for another. We are used to
everything being fast and responsive, and there are so many alternatives that we do not think twice
before trying something else. And if that something else turns up to be better… One man’s loss
is another man’s gain. Do we solve all our problems with scalability? Not even close. Many other
factors decide the availability of our applications. However, scalability is an important part of it, and
it happens to be the subject of this chapter.

253

Clustering And Scaling Services 254

What is scalability? It is a property of a system that indicates its ability to handle increased load
in a graceful manner or its potential to be enlarged as demand increases. It is the ability to accept
increased volume or traffic.

The truth is that the way we design our applications dictates the scaling options available.
Applications will not scale well if they are not designed to scale. That is not to say that an application
not designed for scaling cannot scale. Everything can scale, but not everything can scale well.

Commonly observed scenario is as follows.

We start with a simple architecture, sometimes with load balancer sometimes without, setup a few
application servers and one database. Everything is great, complexity is low, andwe can develop new
features very fast. The cost of operations is low, income is high (considering that we just started),
and everyone is happy and motivated.

Business is growing, and the traffic is increasing. Things are beginning to fail, and performance
is dropping. Firewalls are added, additional load balancers are set up, the database is scaled, more
application servers are added and so on. Things are still relatively simple. We are faced with new
challenges, but obstacles can be overcome in time. Even though the complexity is increasing, we can
still handle it with relative ease. In other words, what we’re doing is still more or less the same but
bigger. Business is doing well, but it is still relatively small.

And then it happens. The big thing you’ve been waiting for. Maybe one of the marketing campaigns
hit the spot. Maybe there was a negative change in your competition. Maybe that last feature was
indeed a killer one. No matter the reasons, business got a big boost. After a short period of happiness
due to this change, your pain increases tenfold. Adding more databases does not seem to be enough.
Multiplying application servers does not appear to fulfill the needs. You start adding caching and
what so not. You start getting the feeling that every time you multiply something, benefits are not
equally big. Costs increase, and you are still not able to meet the demand. Database replications are
too slow. New application servers do not make such a big difference anymore. Operational costs are
increasing faster than you expected. The situation hurts the business and the team. You are starting
to realize that the architecture you were so proud of cannot fulfill this increase in load. You can not
split it. You cannot scale things that hurt the most. You cannot start over. All you can do is continue
multiplying with ever decreasing benefits of such actions.

The situation described above is quite common. What was good at the beginning, is not necessarily
right when the demand increases.We need to balance the need for YAGNI (You Ain’t Gonna Need It)
principle and the longer term vision. We cannot start with the system optimized for large companies
because it is too expensive and does not provide enough benefits when business is small. On the other
hand, we cannot lose the focus from one of the main objectives of any business. We cannot not think
about scaling from the very first day. Designing scalable architecture does not mean that we need to
start with a cluster of a hundred servers. It does not mean that we have to develop something big and
complex from the start. It means that we should start small, but in the way that, when it becomes big,
it is easy to scale. While microservices are not the only way to accomplish that goal, they are indeed
a goodway to approach this problem. The cost is not in development but operations. If operations are
automated, that cost can be absorbed quickly and does not need to represent a massive investment.

Clustering And Scaling Services 255

As you already saw (and will continue seeing throughout the rest of the book), there are excellent
open source tools at our disposal. The best part of automation is that the investment tends to have
lower maintenance cost than when things are done manually.

We already discussed microservices and automation of their deployments on a tiny scale. Now it’s
time to convert this small scale to something bigger. Before we jump into practical parts, let us
explore what are some of the different ways one might approach scaling.

We are often limited by our design and choosing the way applications are constructed limits our
choices severely. Although there are many different ways to scale, most common one is called Axis
Scaling.

Axis Scaling

Axis scaling can be best represented through three dimensions of a cube; x-axis, y-axis and z-axis.
Each of those dimensions describes a type of scaling.

• X-Axis: Horizontal duplication
• Y-Axis: Functional decomposition
• Z-Axis: Data partitioning

Clustering And Scaling Services 256

Figure 14-1: Scale cube

Let’s go through axes, one at the time.

X-Axis Scaling

In a nutshell, x-axis scaling is accomplished by running multiple instances of an application or a
service. In most cases, there is a load balancer on top that makes sure that the traffic is shared among
all those instances. The biggest advantage of x-axis scaling is simplicity. All we have to do is deploy
the same application on multiple servers. For that reason, this is the most commonly used type of
scaling. However, it comes with its set of disadvantages when applied to monolithic applications.
Having a huge application usually requires big cache that demands heavy usage of memory. When
such an application is multiplied, everything is multiplied by it, including the cache. Another, often
more important, problem is inappropriate usage of resources. Performance problems are almost
never related to the whole application. Not all modules are equally affected, and, yet, we multiply
everything. That means that even thoughwe could be better of by scaling only part of the application
that require such an action, we scale everything. Never the less, x-scaling is important no matter
the architecture. The major difference is the effect that such a scaling has. By using microservices,
we are not removing the need for x-axis scaling but making sure that due to their architecture such
scaling has more effect than with alternative and more traditional approaches to architecture. With

Clustering And Scaling Services 257

microservices we have the option to fine-tune scaling. We can have many instances of services that
suffer a lot under heavy load and only a few instances of those that are used less often or require
fewer resources. On top of that, since they are small, we might never reach a limit of a service. A
small service in a big server would need to receive a truly massive amount of traffic before the need
for scaling arises. Scaling microservices is more often related to fault tolerance than performance
problems. We want to have multiple copies running so that, if one of them dies, the others can take
over until recovery is performed.

Figure 14-2: Monolithic application scaled inside a cluster

Y-Axis Scaling

Y-axis scaling is all about decomposition of an application into smaller services. Even though there
are different ways to accomplish this decomposition, microservices are probably the best approach
we can take. When they are combined with immutability and self-sufficiency, there is indeed no
better alternative (at least from the prism of y-axis scaling). Unlike x-axis scaling, the y-axis is not
accomplished by running multiple instances of the same application but by having multiple different
services distributed across the cluster.

Clustering And Scaling Services 258

Z-Axis Scaling

Z-axis scaling is rarely applied to applications or services. Its primary and most common usage is
among databases. The idea behind this type of scaling is to distribute data among multiple servers
thus reducing the amount of work that each of them needs to perform. Data is partitioned and
distributed so that each server needs to deal only with a subset of the data. This type of the separation
is often called sharding, and there are many databases specially designed for this purpose. Benefits
of z-axis scaling are most noticeable in I/O and cache and memory utilization.

Clustering

A server cluster consists of a set of connected servers that work together and can be seen as a single
system. They are usually connected through fast local area network (LAN). The major difference
between a cluster and simply a group of servers is that the cluster acts as a single system trying to
provide high availability, load balancing, and parallel processing.

If we deploy applications, or services, to individually managed servers and treat them as separate
units, the utilization of resources is sub-optimum. We cannot know in advance which group of
services should be deployed to a server and utilize resources to their maximum. More importantly,
resource usage tends to fluctuate. While, in the morning, some service might require a lot of
memory, during the afternoon that usage might be lower. Having predefined servers does not allow
us elasticity that would balance that usage in the best possible way. Even if such a high level of
dynamism is not required, predefined servers tend to create problems when something goes wrong,
resulting in manual actions to redeploy the affected services to a healthy node.

Figure 14-3: Cluster with containers deployed to predefined servers

Real clustering is accomplished when we stop thinking in terms of individual servers and start
thinking of a cluster; of all servers as one big entity. That can be better explained if we drop to a bit
lower level. When we deploy an application, we tend to specify how much memory or CPU it might
need. However, we do not decide which memory slots our application will use nor which CPUs it
should utilize. For example, we don’t specify that some application should use CPUs 4, 5 and 7. That
would be inefficient and potentially dangerous. We only decide that three CPUs are required. The
same approach should be taken on a higher level. We should not care where an application or a
service will be deployed but what it needs. We should be able to define that the service has certain
requirements and tell some tool to deploy it to whichever server in our cluster, as long as it fulfills
the needs we have. The best (if not the only) way to accomplish that is to consider the whole cluster
as one entity. We can increase or decrease the capacity of that cluster by adding or removing servers

Clustering And Scaling Services 259

but, no matter what we do, it should still be a single entity. We define a strategy and let our services
be deployed somewhere inside the cluster. Those using cloud providers like Amazon Web Services
(AWS), Microsoft’s Azure and Google Cloud Engine (GCP) are already accustomed to this approach,
even though they might not be aware of it.

Throughout the rest of this chapter, we’ll explore ways to create our cluster and explore tools that
can help us with that objective. The fact that we’ll be simulating the cluster locally does not mean
that the same strategies cannot be applied to public or private clouds and data centers. Quite the
opposite.

Figure 14-4: Cluster with containers deployed to servers based on a predefined strategy

Docker Clustering Tools Compared: Kubernetes vs
Docker Swarm vs Mesos

Kubernetes and Docker Swarm are probably the twomost commonly used tools to deploy containers
inside a cluster. Both are created as helper platforms that can be used to manage a cluster of
containers and treat all servers as a single unit. While their goals are, somewhat, similar, they differ
considerably in their approach.

Kubernetes

Kubernetes²²⁹ is based on Google’s experience of many years working with Linux containers. It is,
in a way, a replica of what Google has been doing for a long time but, this time, adapted to Docker.
That approach is great in many ways, most important being that they used their experience from
the start. If you started using Kubernetes around Docker version 1.0 (or earlier), the experience
with Kubernetes was great. It solved many of the problems that Docker itself had. We can mount
persistent volumes that allow us to move containers without losing data, it uses flannel²³⁰ to create
networking between containers, it has load balancer integrated, it uses etcd²³¹ for service discovery,
and so on. However, Kubernetes comes at a cost. When compared with Docker, it uses a different
CLI, different API, and different YAML definitions. In other words, you cannot use Docker CLI,
nor you can use Docker Compose²³² to define containers. Everything needs to be done from scratch

²²⁹http://kubernetes.io/
²³⁰https://github.com/coreos/flannel
²³¹https://github.com/coreos/etcd
²³²https://docs.docker.com/compose/

http://kubernetes.io/
https://github.com/coreos/flannel
https://github.com/coreos/etcd
https://docs.docker.com/compose/
http://kubernetes.io/
https://github.com/coreos/flannel
https://github.com/coreos/etcd
https://docs.docker.com/compose/

Clustering And Scaling Services 260

exclusively for Kubernetes. It’s as if the tool was not written for Docker (which is partly true).
Kubernetes brought clustering to a new level but at the expense of usability and steep learning
curve.

Docker Swarm

Docker Swarm²³³ took a different approach. It is a native clustering for Docker. The best part is that
it exposes standard Docker API meaning that any tool that you used to communicate with Docker
(Docker CLI, Docker Compose, Dokku, Krane, and so on) canwork equally well with Docker Swarm.
That in itself is both an advantage and a disadvantage at the same time. Being able to use familiar
tools of your choosing is great but for the same reasons we are bound by the limitations of Docker
API. If the Docker API doesn’t support something, there is no way around it through Swarm API,
and some clever tricks need to be performed.

Apache Mesos

The next in line of tools that can be used to manage a cluster is Apache Mesos²³⁴. It is the
clustering veteran. Mesos abstracts CPU, memory, storage, and other resources away frommachines
(physical or virtual), enabling fault-tolerant and elastic distributed systems to be easily built and run
efficiently.

Mesos is made using the same principles as the Linux kernel, only at a different level of abstraction.
Mesos kernel runs on every machine and provides applications with APIs for resource management
and scheduling across entire datacenter and cloud environments. Unlike Kubernetes and Docker
Swarm, Mesos is not limited to containers. It can work with almost any type of deployments
including Docker containers.

Mesos uses Zookeeper for service discovery. It uses Linux containers to isolate processes. If, for
example, we deploy Hadoop without using Docker, Mesos will run it as a native Linux container
providing similar features as if we packed it as a Docker container.

Mesos provides few features that Swarm doesn’t have at this moment, mainly more powerful
scheduler. Apart from the scheduler, what makes Mesos attractive is that we can use it for both
Docker and non-Docker deployments. Many organizations might not want to use Docker, or they
might decide to use a combination of both Docker and non-Docker deployments. In such a case,
Mesos is truly an excellent option if we do not want to deal with two sets of clustering tools; one
for containers and the other for the rest of deployments.

However, Mesos is old and too big for what we’re trying to accomplish. More importantly, Docker
containers are an afterthought. The platform was not designed with them in mind but added Docker
support later on. Working with Docker and Mesos feels awkward, and it becomes apparent from
the very start that those two were not meant to be used together. Given the existence of Swarm

²³³https://docs.docker.com/swarm/
²³⁴http://mesos.apache.org/

https://docs.docker.com/swarm/
http://mesos.apache.org/
https://docs.docker.com/swarm/
http://mesos.apache.org/

Clustering And Scaling Services 261

and Kubernetes, there is nothing that Mesos can offer to those decided to embrace Docker. Mesos
is falling behind. The main advantage it has over the other two tools is its wide adoption. Many
started using it before the emergence of Docker and might choose stick with it. For those that have
the option to start fresh, the choice should fall between Kubernetes and Docker Swarm.

We’ll explore Kubernetes and Docker Swarm in more details and leave Mesos behind. The
exploration will be based on their setup and features they provide for running containers in a cluster.

Setting It Up

Setting up Docker Swarm is easy, straightforward and flexible. All we have to do is install one of
the service discovery tools and run the swarm container on all nodes. Since the distribution itself
is packed in a Docker container, it works in the same way no matter the operating system. We run
the swarm container, expose a port and inform it about the address of the service discovery. It could
hardly be easier than that. We can even start using it without any service discovery tool, see whether
we like it and when our usage of it becomes more serious, add etcd²³⁵, Consul²³⁶ or some of the other
supported tools.

Kubernetes setup is quite more complicated and obfuscated. Installation instructions differ from OS
to OS and provider to provider. Each OS or a hosting provider comes with its set of instructions, each
of them having a separate maintenance team with a different set of problems. As an example, if you
choose to try it out with Vagrant, you are stuck with Fedora. That does not mean that you cannot
run it with Vagrant and, let’s say, Ubuntu or CoreOS. You can, but you need to start searching
for instructions outside the official Kubernetes Getting Started²³⁷ page. Whatever your needs are,
it’s likely that the community has the solution, but you still need to spend some time searching
for it and hoping that it works from the first attempt. The bigger problem is that the installation
relies on a bash script. That would not be a big deal in itself if we would not live in the era where
configuration management is a must. We might not want to run a script but make Kubernetes be
part of our Puppet²³⁸, Chef²³⁹, or Ansible²⁴⁰ definitions. Again, this can be overcome as well. You can
find Ansible playbooks for running Kubernetes, or you can write your own. None of those issues
are a big problem but, when compared with Swarm, they are a bit painful. With Docker, we were
supposed not to have installation instructions (aside from a few docker run arguments). We were
supposed to run containers. Swarm fulfills that promise, and Kubernetes doesn’t.

While some might not care about which discovery tool is used, I love the simplicity of Swarm and
the logic “batteries included but removable”. Everything works out-of-the-box, but we still have the
option to substitute one component for the other. Unlike Swarm, Kubernetes is an opinionated tool.
You need to live with the choices it made for you. If you want to use Kubernetes, you have to use
etcd. I’m not trying to say that etcd is bad (quite contrary), but if you prefer, for example, to use

²³⁵https://github.com/coreos/etcd
²³⁶https://www.consul.io/
²³⁷http://kubernetes.io/gettingstarted/
²³⁸https://puppetlabs.com/
²³⁹https://www.chef.io/
²⁴⁰http://www.ansible.com/

https://github.com/coreos/etcd
https://www.consul.io/
http://kubernetes.io/gettingstarted/
https://puppetlabs.com/
https://www.chef.io/
http://www.ansible.com/
https://github.com/coreos/etcd
https://www.consul.io/
http://kubernetes.io/gettingstarted/
https://puppetlabs.com/
https://www.chef.io/
http://www.ansible.com/

Clustering And Scaling Services 262

Consul, you’re in a very complicated situation and would need to use one for Kubernetes and the
other for the rest of your service discovery needs. Another thing I dislike about Kubernetes is its
need to know things in advance, before the setup. You need to tell it the addresses of all your nodes,
which role each of them has, how many minions there are in the cluster and so on. With Swarm,
we just bring up a node and tell it to join the network. Nothing needs to be set in advance since the
information about the cluster is propagated through the gossip protocol.

Setup might not be the most significant difference between those tools. No matter which tool you
choose, sooner or later everything will be up and running, and you’ll forget any trouble you might
have had during the process. You might say that we should not choose one tool over the other only
because one is easier to set up. Fair enough. Let’s move on and speak about differences in how you
define containers that should be run with those tools.

Running Containers

How do you define all the arguments needed for running Docker containers with Swarm? You
don’t! Actually, you do, but not in any form or way different from the way you were defining them
before Swarm. If you are used to running containers through Docker CLI, you can keep using it
with (almost) the same commands. If you prefer to use Docker Compose to run containers, you can
continue using it to run them inside the Swarm cluster. Whichever way you’ve used to run your
containers, the chances are that you can continue doing the same with Swarm but on a much larger
scale.

Kubernetes requires you to learn its CLI and configurations. You cannot use docker-compose.yml
definitions you created earlier. You’ll have to create Kubernetes equivalents. You cannot use Docker
CLI commands you learned before. You’ll have to learn Kubernetes CLI and, likely, make sure that
the whole organization learns it as well.

No matter which tool you choose for deployments to your cluster, chances are you are already
familiar with Docker. You are probably already used to Docker Compose as a way to define
arguments for the containers you’ll run. If you played with it for more than a few hours, you are
using it as a substitute for Docker CLI. You run containers with it, tail their logs, scale them, and so
on. On the other hand, you might be a hard-core Docker user who does not like Docker Compose
and prefers running everything through Docker CLI or you might have your bash scripts that run
containers for you. No matter what you choose, it should work with Docker Swarm.

If you adopt Kubernetes, be prepared to have multiple definitions of the same thing. You will need
Docker Compose to run your containers outside Kubernetes. Developers will continue needing to
run containers on their laptops, your staging environments might or might not be a big cluster, and
so on. In other words, once you adopt Docker, Docker Compose or Docker CLI are unavoidable.
You have to use them one way or another. Once you start using Kubernetes you will discover that
all your Docker Compose definitions (or whatever else you might be using) need to be translated
to Kubernetes way of describing things and, from there on, you will have to maintain both. With
Kubernetes, everything will have to be duplicated resulting in higher cost of maintenance. And it’s
not only about duplicated configurations. Commands you’ll run outside the cluster will be different

Clustering And Scaling Services 263

from those inside the cluster. All those Docker commands you learned and love will have to get their
Kubernetes equivalents inside the cluster.

Guys behind Kubernetes are not trying to make your life miserable by forcing you to do things “their
way”. The reason for such a big differences is in different approaches Swarm and Kubernetes are
using to tackle the same problem. Swarm team decided to match their API with the one fromDocker.
As a result, we have (almost) full compatibility. Almost everything we can do with Docker we can
do with Swarm as well only on a much larger scale. There’s nothing new to do, no configurations
to be duplicated and nothing new to learn. No matter whether you use Docker CLI directly or go
through Swarm, API is (more or less) the same. The negative side of that story is that if there is
something you’d like Swarm to do and that something is not part of the Docker API, you’re in for a
disappointment. Let us simplify this a bit. If you’re looking for a tool for deploying containers in a
cluster that will use Docker API, Swarm is the solution. On the other hand, if you want a tool that
will overcome Docker limitations, you should go with Kubernetes. It is power (Kubernetes) against
simplicity (Swarm). Or, at least, that’s how it was until recently. But, I’m jumping ahead of myself.

The only question unanswered is what those limitations are. Two of themajor ones were networking,
persistent volumes and automatic failover in case one or more containers or a whole node stopped
working.

Until Docker Swarm release 1.0 we could not link containers running on different servers. We still
cannot link them, but now we havemulti-host networking to help us connect containers running on
different servers. It is a very powerful feature. Kubernetes used flannel²⁴¹ to accomplish networking
and now, since the Docker release 1.9, that feature is available as part of Docker CLI.

Another problem was persistent volumes. Docker introduced them in release 1.9. Until recently, if
you persist a volume, that container was tied to the server that volume resides. It could not be moved
around without, again, resorting to some nasty tricks like copying volume directory from one server
to another. That in itself is a slow operation that defies the goals of the tools like Swarm. Besides,
even if you have time to copy a volume from one to the other server, you do not know where to copy
since clustering tools tend to treat your whole datacenter as a single entity. Your containers will be
deployed to a location most suitable for them (least number of containers running, most CPUs or
memory available, and so on). Now we have persistent volumes supported by Docker natively.

Finally, automatic failover is probably the only feature advantage Kubernetes has over Swarm.
However, failover solution provided by Kuberentes is incomplete. If a container goes down,
Kubernetes will detect that and start it again on a healthy node. The problem is that containers
or whole nodes often do not fail for no reason. Much more needs to be done than a simple re-
deployment. Someone needs to be notified, information before a failure needs to be evaluated, and
so on. If re-deployment is all you need, Kubernetes is a good solution. If more is needed, Swarm, due
to its “batteries included but removable” philosophy, allows you to build your solution. Regarding
the failover, it’s a question whether to aim for an out-of-the-box solution (Kubernetes) that is hard
to extend or go for a solution that is built with the intention to be easily extended (Swarm).

Both networking and persistent volumes problems were one of the features supported by Kubernetes

²⁴¹https://github.com/coreos/flannel

https://github.com/coreos/flannel
https://github.com/coreos/flannel

Clustering And Scaling Services 264

for quite some time and the reason many were choosing it over Swarm. That advantage disappeared
with Docker release 1.9. Automatic fail-over remains an advantage Kubernetes has over Swarm
when looking at out-of-the-box solutions. In the case of Swarm, we need to develop failover
strategies ourselves.

The Choice

When trying to make a choice between Docker Swarm and Kubernetes, think in following terms.
Do you want to depend on Docker solving problems related to clustering. If you do, choose Swarm.
If Docker does not support something, it will be unlikely that it will be supported by Swarm since it
relies on Docker API. On the other hand, if you want a tool that works around Docker limitations,
Kubernetes might be the right one for you. Kubernetes was not built around Docker but is based on
Google’s experience with containers. It is opinionated and tries to do things in its own way.

The real question is whether Kubernetes’ way of doing things, which is quite different from how
we use Docker, is overshadowed by advantages it gives. Or, should we place our bets into Docker
itself and hope that it will solve those problems? Before you answer those questions, take a look
at the Docker release 1.9. We got persistent volumes and software networking. We also got unless-
stopped restart policy that will manage our unwanted failures. Now, there are three things less of
a difference between Kubernetes and Swarm. Actually, these days there are very few advantages
Kubernetes has over Swarm. Automatic failover featured by Kubernetes is a blessing and a curse
at the same time. On the other hand, Swarm uses Docker API meaning that you get to keep all
your commands and Docker Compose configurations. Personally, I’m placing my bets on Docker
engine getting improvements and Docker Swarm running on top of it. The difference between the
two is small. Both are production ready but Swarm is easier to set up, easier to use and we get to
keep everything we built before moving to the cluster; there is no duplication between cluster and
non-cluster configurations.

My recommendation is to go with Docker Swarm. Kubernetes is too opinionated, hard to set up, too
different from Docker CLI/API and at the same time, besides automatic failover, it doesn’t have real
advantages over Swarm since the Docker release 1.9. That doesn’t mean that there are no features
available in Kubernetes that are not supported by Swarm. There are feature differences in both
directions. However, those differences are, in my opinion, not significant ones and the gap is getting
smaller with each Docker release. Actually, for many use cases, there is no gap at all while Docker
Swarm is easier to set up, learn and use.

Let us give Docker Swarm a spin and see how it fares.

Docker SwarmWalkthrough

To set up Docker Swarm, we need one of the service discovery tools. Consul served us well, and
we’ll continue using it for this purpose. It is a great tool and works well with Swarm. We’ll set up
three servers. One will act as master and the other two as cluster nodes.

Clustering And Scaling Services 265

Figure 14-5: Docker Swarm cluster with Consul used for service discovery

Swarm will use Consul instances to register and retrieve information about nodes and services
deployed in them. Whenever we bring up a new node or halt an existing one, that information
will be propagated to all Consul instances and reach Docker Swarm, which, in turn, will know
where to deploy our containers. The master node will have Swarm master running. We’ll use its
API to instruct Swarm what to deploy and what the requirements are (number of CPUs, the amount
of memory, and so on). Node servers will have Swarm nodes deployed. Each time Swarm master
receives an instruction to deploy a container, it will evaluate the current situation of the cluster and
send instructions to one of the nodes to perform the deployment.

Clustering And Scaling Services 266

Figure 14-6: Docker Swarm cluster with one master and two nodes

We’ll start with the spread strategy that will deploy containers to a node that has the least number of
containers running. Since, in the beginning, nodes will be empty, when given instruction to deploy
the first container, Swarm master will propagate it to one of the nodes since both are empty at the
moment.

Clustering And Scaling Services 267

Figure 14-7: Docker Swarm cluster with the first container deployed

When given the second instruction to deploy a container, Swarm master will decide to propagate it
to the other Swarm node, since the first already has one container running.

Clustering And Scaling Services 268

Figure 14-8: Docker Swarm cluster with the second container deployed

If we continue deploying containers, at some point our tiny cluster will become saturated, and
something would need to be done before the server collapses.

Clustering And Scaling Services 269

Figure 14-9: Docker Swarm cluster with all nodes full

The only thing we would need to do to increase the cluster capacity is to bring up a new server with
Consul and Swarm node. As soon as such a node is brought up, its information would be propagated
throughout Consul instances as well as to Swarm master. From that moment on, Swarm would have
that node in the account for all new deployments. Since this server would start with no containers
and we are using a simple spread strategy, all new deployments would be performed on that node
until it reaches the same number of running containers as the others.

Clustering And Scaling Services 270

Figure 14-10: Docker Swarm cluster with container deployed to the new node

Opposite scenario can be observed in case one node stops responding due to a failure. Consul cluster
would detect that one of it’s members is not responding and propagate that information throughout
the cluster, thus reaching Swarm master. From that moment on, all new deployments would be sent
to one of the healthy nodes.

Clustering And Scaling Services 271

Figure 14-11: Docker Swarm cluster one node failed and containers distributed over healthy nodes

Let us dive into simple examples we just discussed. Later on, we’ll explore other strategies as well
as the ways Swarm behaves when certain constraints are set; CPU, memory and the like.

Setting Up Docker Swarm

To see Docker Swarm in action, we’ll simulate an Ubuntu cluster. We’ll bring up the cd node
that we’ll use for orchestration, one node that will act as Swarm master and two nodes that will
form the cluster. Up to this point, we always used Ubuntu 14.04 LTS (long term support) since it is
considered stable and supported for a long time. The next long term support version will be 16.04
LTS (not released at the time this book was written). Since some of the features we’ll explore later
on, throughout this chapter, will need a relatively new Kernel, the swarm nodes will be running
Ubuntu 15.04. If you open the Vagrantfile²⁴², you’ll notice that Swarm master and nodes have the
following line:

1 d.vm.box = "ubuntu/vivid64"

Vivid64 is the code name for Ubuntu 15.04.

Let us bring up the nodes.

²⁴²https://github.com/vfarcic/ms-lifecycle/blob/master/Vagrantfile

https://github.com/vfarcic/ms-lifecycle/blob/master/Vagrantfile
https://github.com/vfarcic/ms-lifecycle/blob/master/Vagrantfile

Clustering And Scaling Services 272

1 vagrant up cd swarm-master swarm-node-1 swarm-node-2

With all the four nodes up and running, we can proceed, and create the Swarm cluster. As before,
we’ll do the provisioning using Ansible.

1 vagrant ssh cd

2

3 ansible-playbook /vagrant/ansible/swarm.yml \

4 -i /vagrant/ansible/hosts/prod

Let us use our time wisely and explore the swarm.yml playbook, while Ansible is provisioning our
servers. The content of the swarm.yml²⁴³ file is as follows.

1 - hosts: swarm

2 remote_user: vagrant

3 serial: 1

4 sudo: yes

5 vars:

6 - debian_version: vivid

7 - docker_cfg_dest: /lib/systemd/system/docker.service

8 - is_systemd: true

9 roles:

10 - common

11 - docker

12 - consul

13 - swarm

14 - registrator

We started by setting up docker. Since this time we’re using a different version of Ubuntu, we had to
specify those differences as variables, so that the correct repository is used (debian_version), as well
as to reload service configuration (is_systemd). We also set the docker_cfg_dest variable so that the
configuration file is sent to the correct location.

We have few more variables set in the hosts/prod²⁴⁴ file.

²⁴³https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/swarm.yml
²⁴⁴https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/prod

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/swarm.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/prod
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/swarm.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/hosts/prod

Clustering And Scaling Services 273

1 [swarm]

2 10.100.192.200 swarm_master=true consul_extra="-server -bootstrap-expect 1" dock\

3 er_cfg=docker-swarm-master.service

4 10.100.192.20[1:2] swarm_master_ip=10.100.192.200 consul_server_ip=10.100.192.20\

5 0 docker_cfg=docker-swarm-node.service

We’ll explore swarm_master and swarm_master_ip later on. For now, please remember that they
are defined in the prod file so that they can be applied (or omitted) based on the server type (master
or node). Depending on whether we are provisioning master or node, Docker configuration file is
docker-swarm-master.service or docker-swarm-node.service.

Let’s take a look at the ExecStart part of the master node Docker configuration (the rest is the same
as the standard one that comes with the Docker package) defined in roles/docker/templates/docker-
swarm-master.service²⁴⁵.

1 ExecStart=/usr/bin/docker daemon -H fd:// \

2 --insecure-registry 10.100.198.200:5000 \

3 --registry-mirror=http://10.100.198.200:5001 \

4 --cluster-store=consul://{{ ip }}:8500/swarm \

5 --cluster-advertise={{ ip }}:2375 {{ docker_extra }}

We’re tellingDocker to allow insecure registry on the IP/port where our private registry runs (located
in the cd node). We’re also specifying that Swarm cluster information should be stored in Consul
running on the same node, as well as that it should be advertised to the port 2375.

The node configuration defined in roles/docker/templates/docker-swarm-node.service²⁴⁶ has few
more arguments.

1 ExecStart=/usr/bin/docker daemon -H fd:// \

2 -H tcp://0.0.0.0:2375 \

3 -H unix:///var/run/docker.sock \

4 --insecure-registry 10.100.198.200:5000 \

5 --registry-mirror=http://10.100.198.200:5001 \

6 --cluster-store=consul://{{ ip }}:8500/swarm \

7 --cluster-advertise={{ ip }}:2375 {{ docker_extra }}

Apart from those arguments that are the same as in the master node, we’re telling Docker to
allow communication on the port 2375 (-H tcp://0.0.0.0:2375) as well as through the socket (-H
unix:///var/run/docker.sock).

Both master and node configurations are following the standard settings recommended by the
official Docker Swarm documentation when used in conjunction with Consul.

The rest of the roles used in the swarm.yml²⁴⁷ playbook are consul, swarm, and registrator. Since we

²⁴⁵https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/docker/templates/docker-swarm-master.service
²⁴⁶https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/docker/templates/docker-swarm-node.service
²⁴⁷https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/swarm.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/docker/templates/docker-swarm-master.service
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/docker/templates/docker-swarm-master.service
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/docker/templates/docker-swarm-node.service
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/swarm.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/docker/templates/docker-swarm-master.service
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/docker/templates/docker-swarm-node.service
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/swarm.yml

Clustering And Scaling Services 274

already used and saw Consul and Registrator roles, we’ll explore only tasks belonging to the swarm
role defined in the roles/swarm/tasks/main.yml²⁴⁸ file.

1 - name: Swarm node is running

2 docker:

3 name: swarm-node

4 image: swarm

5 command: join --advertise={{ ip }}:2375 consul://{{ ip }}:8500/swarm

6 env:

7 SERVICE_NAME: swarm-node

8 when: not swarm_master is defined

9 tags: [swarm]

10

11 - name: Swarm master is running

12 docker:

13 name: swarm-master

14 image: swarm

15 ports: 2375:2375

16 command: manage consul://{{ ip }}:8500/swarm

17 env:

18 SERVICE_NAME: swarm-master

19 when: swarm_master is defined

20 tags: [swarm]

As you can see, running Swarm is pretty straightforward. All we have to do is run the swarm
container and, depending on whether it’s master or node, specify one command or the other. If
server acts as a Swarm node, the command is join --advertise={{ ip }}:2375 consul://{{ ip

}}:8500/swarm which, translated into plain words, means that it should join the cluster, advertise
its existence on port 2375 and use Consul running on the same server for service discovery.
The command that should be used in the Swarm master is even shorter; manage consul://{{ ip

}}:8500/swarm. All we had to do is specify that this Swarm container should be used to manage the
cluster and, as with Swarm nodes, use Consul for service discovery.

Hopefully, the playbook we run earlier finished its execution. If it didn’t, grab a coffee and continue
reading once it’s done. We’re about to check whether our Swarm cluster is working as expected.

Since we are still inside the cd node, we should tell Docker CLI to use a different host.

1 export DOCKER_HOST=tcp://10.100.192.200:2375

With the Docker client running on cd and using the swarm-master node as a host, we can control
the Swarm cluster remotely. For a start, we can check the information of our cluster.

²⁴⁸https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/swarm/tasks/main.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/swarm/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/swarm/tasks/main.yml

Clustering And Scaling Services 275

1 docker info

The output is as follows.

1 Containers: 4

2 Images: 4

3 Role: primary

4 Strategy: spread

5 Filters: health, port, dependency, affinity, constraint

6 Nodes: 2

7 swarm-node-1: 10.100.192.201:2375

8 └ Status: Healthy

9 └ Containers: 3

10 └ Reserved CPUs: 0 / 1

11 └ Reserved Memory: 0 B / 1.535 GiB

12 └ Labels: executiondriver=native-0.2, kernelversion=3.19.0-42-generic, operati\

13 ngsystem=Ubuntu 15.04, storagedriver=devicemapper

14 swarm-node-2: 10.100.192.202:2375

15 └ Status: Healthy

16 └ Containers: 3

17 └ Reserved CPUs: 0 / 1

18 └ Reserved Memory: 0 B / 1.535 GiB

19 └ Labels: executiondriver=native-0.2, kernelversion=3.19.0-42-generic, operati\

20 ngsystem=Ubuntu 15.04, storagedriver=devicemapper

21 CPUs: 2

22 Total Memory: 3.07 GiB

23 Name: b358fe59b011

Isn’t this great? With a single command, we have an overview of the whole cluster. While, at this
moment, we have only two servers (swarm-node-1 and swarm-node-2), if there would be hundred,
thousand, or even more nodes, docker info would provide information about all of them. In this
case, we can see that four containers are running and four images. That is correct since each node
is running Swarm and Registrator containers. Further on, we can see the Role, Strategy, and Filters.
Next in the line are nodes that constitute our cluster followed by information about each of them.
We can see how many containers each is running (currently two), how many CPUs and memory
is reserved for our containers, and labels associated with each node. Finally, we can see the total
number of CPUs and memory of the whole cluster. Everything presented by docker info acts not
only as information but also a functionality of the Swarm cluster. For now, please note that all this
information is available for inspection. Later on, we’ll explore how to utilize it for our benefit.

The best part of Docker Swarm is that it shares the same API as Docker, so all the commands we
already used throughout this book are available. The only difference is that instead of operating
Docker on a single server, with Swarm we are operating a whole cluster. For example, we can list
all images and processes throughout the entire Swarm cluster.

Clustering And Scaling Services 276

1 docker images

2

3 docker ps -a

By running docker images and docker ps -awe can observe that there are two images pulled into
the cluster and four containers running (two containers on each of the two servers). The only visual
difference is that names of running containers are prefixed with the name of the server they are
running on. For example, the container named registrator is presented as swarm-node-1/registrator
and swarm-node-2/registrator. The combined output of those two commands is as follows.

1 REPOSITORY TAG IMAGE ID CREATED \

2 VIRTUAL SIZE

3 swarm latest a9975e2cc0a3 4 weeks ago \

4 17.15 MB

5 gliderlabs/registrator latest d44d11afc6cc 4 months ago \

6 20.93 MB

7 ...

8 CONTAINER ID IMAGE COMMAND CREATED \

9 STATUS PORTS NAMES

10 a2c7d156c99d gliderlabs/registrator "/bin/registrator -ip" 2 hours ag\

11 o Up 2 hours swarm-node-2/regis\

12 trator

13 e9b034aa3fc0 swarm "/swarm join --advert" 2 hours ag\

14 o Up 2 hours 2375/tcp swarm-node-2/swarm\

15 -node

16 a685cdb09814 gliderlabs/registrator "/bin/registrator -ip" 2 hours ag\

17 o Up 2 hours swarm-node-1/regis\

18 trator

19 5991e9bd2a40 swarm "/swarm join --advert" 2 hours ag\

20 o Up 2 hours 2375/tcp swarm-node-1/swarm\

21 -node

Now that we know that Docker commandswork in the samewaywhen run against the remote server
(swarm-master) and can be used to control the whole cluster (swarm-node-1 and swarm-node-2),
let’s try to deploy our books-ms service.

Deploying with Docker Swarm

We’ll start by repeating the same deployment process we did before, but, this time, we’ll be sending
commands to the Swarm master.

Clustering And Scaling Services 277

1 git clone https://github.com/vfarcic/books-ms.git

2

3 cd ~/books-ms

We cloned the books-ms repository and, now, we can run the service through Docker Compose.

1 docker-compose up -d app

Since the app target is linked with the db, Docker Compose run both. So far, everything looks the
same as if we run the same command without Docker Swarm. Let us take a look at the processes
that were created.

1 docker ps --filter name=books --format "table {{.Names}}"

The output is as follows.

1 NAMES

2 swarm-node-2/booksms_app_1

3 swarm-node-2/booksms_app_1/booksms_db_1,swarm-node-2/booksms_app_1/db,swarm-node\

4 -2/booksms_app_1/db_1,swarm-node-2/booksms_db_1

As we can see, both containers are running on swarm-node-2. In your case, it could be swarm-node-
1. We did not make the decision where to deploy the containers. Swarm did that for us. Since we
are using the default strategy that, without specifying additional constraints, runs containers on a
server that has the least number of them running. Since both swarm-node-1 and swarm-node-2 were
equally empty (or full), Swarm had an easy choice and could have placed containers on either one
of those servers. In this case, it chose swarm-node-2.

The problem with the deployment we just performed is that the two targets (app and db) are linked.
In such a case, Docker has no other option but to place both containers on the same server. That, in
a way, defies the objective we’re trying to accomplish. We want to deploy containers to the cluster
and, as you’ll soon discover, be able to scale them easily. If both containers need to be run on the
same server, we are limiting Swarm’s ability to distribute them properly. In this example, those two
containers would be better of running on separate servers. If, before deploying those containers, both
servers had the equal number of containers running, it would make more sense to run the app on
one and the db on the other. That way we’d distribute resource usage much better. As it is now, the
swarm-node-2 needs to do all the work, and the swarm-node-1 is empty. The first thing we should
do is to get rid of the link.

Let’s stop the containers we’re running and start over.

Clustering And Scaling Services 278

1 docker-compose stop

2

3 docker-compose rm -f

That was another example of advantages Swarm provides. We sent the stop and rm commands to
the Swarmmaster and it located containers for us. From now on, all the behavior will be the same, in
the sense that, through the Swarm master, we’ll treat the whole cluster as one single unit oblivious
of the specifics of each server.

Deploying with Docker SwarmWithout Links

To deploy containers to Docker Swarm cluster properly, we’ll use a different file for Docker Compose
definition; docker-compose-no-links.yml²⁴⁹. The targets are as follows.

1 app:

2 image: 10.100.198.200:5000/books-ms

3 ports:

4 - 8080

5

6 db:

7 image: mongo

The only significant difference between app and db targets defined in docker-compose.yml and
docker-compose-swarm.yml is that the later does not use links. As you will see soon, this will allow
us to distribute freely containers inside the cluster.

Let’s take a look at what happens if we bring up db and app containers without the link.

1 docker-compose -f docker-compose-no-links.yml up -d db app

2

3 docker ps --filter name=books --format "table {{.Names}}"

The output of the docker ps command is as follows.

1 NAMES

2 swarm-node-1/booksms_db_1

3 swarm-node-2/booksms_app_1

²⁴⁹https://github.com/vfarcic/books-ms/blob/master/docker-compose-no-links.yml

https://github.com/vfarcic/books-ms/blob/master/docker-compose-no-links.yml
https://github.com/vfarcic/books-ms/blob/master/docker-compose-no-links.yml

Clustering And Scaling Services 279

As you can see, this time, Swarm decided to place each container on a different server. It brought up
the first container and, since from that moment on one server had more containers than the other,
it choose to bring up the second on the other node.

By removing linking between containers, we solved one problem but introduced another. Now our
containers can be distributed much more efficiently, but they cannot communicate with each other.
We can address this issue by using a proxy service (nginx, HAProxy, and so on). However, our db
target does not expose any ports to the outside world. A good practice is to expose only ports of
services that are publicly accessible. For that reason, the app target exposes port 8080 and the db
target doesn’t expose any. The db target is meant to be used internally, and only by the app. Since
the Docker release 1.9, linking can be considered deprecated, for a new feature called networking.

Let’s remove the containers and try to bring them up networking enabled.

1 docker-compose -f docker-compose-no-links.yml stop

2

3 docker-compose -f docker-compose-no-links.yml rm -f

Deploying with Docker Swarm and Docker Networking

At the time I was writing this chapter, Docker introduced the new release 1.9. It is, without a
doubt, the most significant release, since version 1.0. It gave us two long awaited features; multi-
host networking and persistent volumes. Networking makes linking deprecated and is the feature
we need to connect containers across multiple hosts. There is no more need for proxy services to
connect containers internally. That is not to say that proxy is not useful, but that we should use
a proxy as a public interface towards our services and networking for connecting containers that
form a logical group. The new Docker networking and proxy services have different advantages and
should be used for different use cases. Proxy services provide load balancing and can control the
access to our services. Docker networking is a convenient way to connect separate containers that
form a single service and reside on the same network. A typical use case for Docker networking
would be a service that requires a connection to a database. We can connect those two through
networking. Furthermore, the service itself might need to be scaled and have multiple instances
running. A proxy service with load balancer should fulfill that requirement. Finally, other services
might need to access this service. Since we want to take advantage of load balancing, that access
should also be through a proxy.

Clustering And Scaling Services 280

Figure 14-12: Multi-host networking combined with a proxy and load balancing service

The figure 14-12 represent one common use case. We have a scaled service with two instances
running on nodes 1 and 3. All communication to those services is performed through a proxy service
that takes care of load balancing and security. Any service (be it external or internal) that wants to
access our service needs to go through the proxy. Internally, the service uses the database. The
communication between the service instances and the database is internal and performed through
the multi-host network. This setting allows us to scale easily within the cluster while keeping
internal all communication between containers that compose a single service. In other words, all
communication between containers that compose a single service is done through networking while
the communication between services is performed through the proxy.

There are different ways to create a multi-host network. We can set up the network manually.

1 docker network create my-network

2

3 docker network ls

The output of the network ls command is as follows.

1 NETWORK ID NAME DRIVER

2 5fc39aac18bf swarm-node-2/host host

3 aa2c17ae2039 swarm-node-2/bridge bridge

4 267230c8d144 my-network overlay

5 bfc2a0b1694b swarm-node-2/none null

6 b0b1aa45c937 swarm-node-1/none null

7 613fc0ba5811 swarm-node-1/host host

8 74786f8b833f swarm-node-1/bridge bridge

You can see that one of the networks is my-network we created earlier. It spans the whole Swarm
cluster and we can use it with the –net argument.

Clustering And Scaling Services 281

1 docker run -d --name books-ms-db \

2 --net my-network \

3 mongo

4

5 docker run -d --name books-ms \

6 --net my-network \

7 -e DB_HOST=books-ms-db \

8 -p 8080 \

9 10.100.198.200:5000/books-ms

We started two containers that compose a single service; books-ms is the API that communicates
with books-ms-db that acts as a database. Since both containers had the –net my-network argument,
they both belong to the my-network network. As a result, Docker updated hosts file providing each
container with an alias that can be used for internal communication.

Let’s enter the books-ms container and take a look at the hosts file.

1 docker exec -it books-ms bash

2

3 cat /etc/hosts

4

5 exit

The output of the exec command is as follows.

1 10.0.0.2 3166318f0f9c

2 127.0.0.1 localhost

3 ::1 localhost ip6-localhost ip6-loopback

4 fe00::0 ip6-localnet

5 ff00::0 ip6-mcastprefix

6 ff02::1 ip6-allnodes

7 ff02::2 ip6-allrouters

8 10.0.0.2 books-ms-db

9 10.0.0.2 books-ms-db.my-network

The interesting part of the hosts file are the last two entries. Docker detected that the books-ms-db
container uses the same network as the books-ms container, and updated the hosts file by adding
books-ms-db and books-ms-db.my-network aliases. If some convention is used, it is trivial to code
our services in a way that they use aliases like that one to communicate with resources located in a
separate container (in this case with the database).

We also passed an environment variable DB_HOST to the book-ms. That indicates to our service
which host to use to connect to the database. We can see this by outputting environments of the
container.

Clustering And Scaling Services 282

1 docker exec -it books-ms env

The output of the command is as follows.

1 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

2 HOSTNAME=eb3443a66355

3 DB_HOST=books-ms-db

4 DB_DBNAME=books

5 DB_COLLECTION=books

6 HOME=/root

As you can see, one of the environment variables is DB_HOST with the value books-ms-db.

What we have right now is Docker networking that created hosts alias books-ms-db pointing to
the IP of the network Docker created. We also have an environment variable DB_HOST with value
books-ms-db. The code of the service uses that variable to connect to the database.

As expected, we can specify network as part of our Docker Compose specification. Before we try it
out, let’s remove those two containers and the network.

1 docker rm -f books-ms books-ms-db

2

3 docker network rm my-network

This time, we’ll run containers through Docker Compose. We’ll use the net argument inside docker-
compose-swarm.yml and, in that way, do the same process as we did earlier. The alternative would
be to use new Docker Compose argument –x-networking that would create the network for us but,
at this moment, it is in the experimental stage and not entirely reliable. Before we proceed, let us
take a quick look at the relevant targets inside the docker-compose-swarm.yml²⁵⁰ file.

1 app:

2 image: 10.100.198.200:5000/books-ms

3 ports:

4 - 8080

5 net: books-ms

6 environment:

7 - SERVICE_NAME=books-ms

8 - DB_HOST=books-ms-db

9

10 db:

11 container_name: books-ms-db

²⁵⁰https://github.com/vfarcic/books-ms/blob/master/docker-compose-swarm.yml

https://github.com/vfarcic/books-ms/blob/master/docker-compose-swarm.yml
https://github.com/vfarcic/books-ms/blob/master/docker-compose-swarm.yml

Clustering And Scaling Services 283

12 image: mongo

13 net: books-ms

14 environment:

15 - SERVICE_NAME=books-ms-db

The only important difference is the addition of the net argument. Everything else is, more or less,
the same as in many other targets we explored by now.

Let us create the network and run our containers through Docker Compose.

1 docker network create books-ms

2

3 docker-compose -f docker-compose-swarm.yml up -d db app

The output of the command we just run is as follows.

1 Creating booksms_app_1

2 Creating books-ms-db

Before creating the services app and db, we created a new network called books-ms. The name of the
network is the same as the value of the net argument specified in the docker-compose-swarm.yml
file.

We can confirm that the network was created by running the docker network ls command.

1 docker network ls

The output is as follows.

1 NETWORK ID NAME DRIVER

2 6e5f816d4800 swarm-node-1/host host

3 aa1ccdaefd70 swarm-node-2/docker_gwbridge bridge

4 cd8b1c3d9be5 swarm-node-2/none null

5 ebcc040e5c0c swarm-node-1/bridge bridge

6 6768bad8b390 swarm-node-1/docker_gwbridge bridge

7 8ebdbd3de5a6 swarm-node-1/none null

8 58a585d09bbc books-ms overlay

9 de4925ea50d1 swarm-node-2/bridge bridge

10 2b003ff6e5da swarm-node-2/host host

As you can see, the overlay network books-ms has been created.

We can also double check that the hosts file inside containers has been updated.

Clustering And Scaling Services 284

1 docker exec -it booksms_app_1 bash

2

3 cat /etc/hosts

4

5 exit

The output is as follows.

1 10.0.0.2 3166318f0f9c

2 127.0.0.1 localhost

3 ::1 localhost ip6-localhost ip6-loopback

4 fe00::0 ip6-localnet

5 ff00::0 ip6-mcastprefix

6 ff02::1 ip6-allnodes

7 ff02::2 ip6-allrouters

8 10.0.0.3 books-ms-db

9 10.0.0.3 books-ms-db.my-network

Finally, let’s see how did Swarm distribute our containers.

1 docker ps --filter name=books --format "table {{.Names}}"

The output is as follows.

1 NAMES

2 swarm-node-2/books-ms-db

3 swarm-node-1/booksms_app_1

Swarm deployed the app container to the swarm-node-1 and the db container to the swarm-node-2.

Finally, let’s test whether the book-ms service is working properly.We do not knowwhere did Swarm
deploy the container nor which port is exposed. Since we do not (yet) have a proxy, we’ll retrieve
the IP and the port of the service from Consul, send a PUT request to store some data in the database
residing in a different container and, finally, send a GET request to check whether we can retrieve
the record. Since we do not have a proxy service that would make sure that requests are redirected
to the correct server and port, we’ll have to retrieve the IP and the port from Consul.

Clustering And Scaling Services 285

1 ADDRESS=`curl \

2 10.100.192.200:8500/v1/catalog/service/books-ms \

3 | jq -r '.[0].ServiceAddress + ":" + (.[0].ServicePort | tostring)'`

4

5 curl -H 'Content-Type: application/json' -X PUT -d \

6 '{"_id": 2,

7 "title": "My Second Book",

8 "author": "John Doe",

9 "description": "A bit better book"}' \

10 $ADDRESS/api/v1/books | jq '.'

11

12 curl $ADDRESS/api/v1/books | jq '.'

The output of the last command is as follows.

1 [

2 {

3 "author": "John Doe",

4 "title": "My Second Book",

5 "_id": 2

6 }

7]

If the service could not communicate with the database located on a different node, we would not
be able to put, nor to get data. Networking between containers deployed to separate servers worked!
All we had to do is use an additional argument with Docker Compose (net) and make sure that the
service code utilizes information from the hosts file.

Another advantage of Docker networking is that, if one container stops working, we can redeploy it
(potentially to a separate server) and, assuming that the service can handle the temporary connection
loss, continue using it as if nothing happened.

Scaling Services with Docker Swarm

As you’ve already seen, scaling with Docker Compose is easy. While examples we run by now were
limited to a single server, with Docker Swarm we can extend scaling to the whole cluster. Now that
we have one instance of books-ms running, we can scale it to, let’s say, three.

Clustering And Scaling Services 286

1 docker-compose -f docker-compose-swarm.yml scale app=3

2

3 docker ps --filter name=books --format "table {{.Names}}"

The output of the ps command is as follows.

1 NAMES

2 swarm-node-2/booksms_app_3

3 swarm-node-1/booksms_app_2

4 swarm-node-2/books-ms-db

5 swarm-node-1/booksms_app_1

We can see that Swarm continues distributing containers evenly. Each node is currently running two
containers. Since we asked Docker Swarm to scale the books-ms containers to three, two of them
are now running alone and the third one is deployed together with the database. Later on, when we
start working on the automation of the deployment to the Docker Swarm cluster, we’ll also make
sure that all the instances of the service are properly set in the proxy.

For the future reference, we might want to store the number of instances in Consul. Later on, it
might come in handy if, for example, we want to increase or decrease that number.

1 curl -X PUT -d 3 \

2 10.100.192.200:8500/v1/kv/books-ms/instances

Services can be as easily descaled. For example, the traffic might drop, later during the day, and we
might want to free resources for other services.

1 docker-compose -f docker-compose-swarm.yml \

2 scale app=1

3

4 curl -X PUT -d 1 \

5 10.100.192.200:8500/v1/kv/books-ms/instances

6

7 docker ps --filter name=books \

8 --format "table {{.Names}}"

Since we told Swarm to scale (down) to one instance and, at that moment, there were three of them
running, Swarm removed instances two and three leaving the system with only one running. That
can be observed from the output of the docker ps command that is as follows.

Clustering And Scaling Services 287

1 NAMES

2 swarm-node-2/books-ms-db

3 swarm-node-1/booksms_app_1

We descaled and went back to the beginning, with one instance of each target running.

We are about to explore fewmore Swarm options. Before we proceed, let us stop and remove running
containers, and start over.

1 docker-compose stop

2

3 docker-compose rm -f

Scheduling Containers Depending on Reserved CPUs
and Memory

Up until now, Swarm was scheduling deployments to servers that have the least number of them
running. That is the default strategy appliedwhen there is no other constraint specified. It is often not
realistic to expect that all containers require equal access to resources. We can further refine Swarm
deployments by giving hints of what we expect from containers. For example, we can specify how
many CPUs we need for a particular container. Let’s give it a spin.

1 docker info

The relevant parts of the output of the command are as follows.

1 ...

2 Nodes: 2

3 swarm-node-1: 10.100.192.201:2375

4 └ Containers: 2

5 └ Reserved CPUs: 0 / 1

6 └ Reserved Memory: 0 B / 1.535 GiB

7 ...

8 swarm-node-2: 10.100.192.202:2375

9 └ Containers: 2

10 └ Reserved CPUs: 0 / 1

11 └ Reserved Memory: 0 B / 1.535 GiB

12 ...

Even though we are already running two containers on each node (Registrator and Swarm), there
are no reserved CPUs, nor reserved memory. When we run those containers, we did not specify that
CPU or memory should be reserved.

Let’s try running Mongo DB with one CPU reserved for the process. Keep in mind that this is only a
hint and will not prevent other containers already deployed on those servers from using that CPU.

Clustering And Scaling Services 288

1 docker run -d --cpu-shares 1 --name db1 mongo

2

3 docker info

Since each node has only one CPU assigned, we could not assign more than one. The relevant parts
of the output of the docker info command are as follows.

1 ...

2 Nodes: 2

3 swarm-node-1: 10.100.192.201:2375

4 └ Status: Healthy

5 └ Containers: 3

6 └ Reserved CPUs: 1 / 1

7 └ Reserved Memory: 0 B / 1.535 GiB

8 ...

9 swarm-node-2: 10.100.192.202:2375

10 └ Status: Healthy

11 └ Containers: 2

12 └ Reserved CPUs: 0 / 1

13 └ Reserved Memory: 0 B / 1.535 GiB

14 ...

This time, swarm-node-1 has one (out of one) CPU reserved. Since there are no more available CPUs
on that node, if we repeat the process and bring up one more Mongo DB with the same constraint,
Swarm will have no option but to deploy it to the second node. Let’s try it out.

1 docker run -d --cpu-shares 1 --name db2 mongo

2

3 docker info

The relevant parts of the output of the ps command are as follows.

1 ...

2 Nodes: 2

3 swarm-node-1: 10.100.192.201:2375

4 └ Status: Healthy

5 └ Containers: 3

6 └ Reserved CPUs: 1 / 1

7 └ Reserved Memory: 0 B / 1.535 GiB

8 ...

9 swarm-node-2: 10.100.192.202:2375

Clustering And Scaling Services 289

10 └ Status: Healthy

11 └ Containers: 3

12 └ Reserved CPUs: 1 / 1

13 └ Reserved Memory: 0 B / 1.535 GiB

14 ...

This time, both nodes have all the CPUs reserved.

We can take a look at the processes and confirm that both DBs are indeed running.

1 docker ps --filter name=db --format "table {{.Names}}"

The output is as follows.

1 NAMES

2 swarm-node-2/db2

3 swarm-node-1/db1

Indeed, both containers are running, one on each node.

Let’s see what happens if we try to bring up one more container that requires one CPU.

1 docker run -d --cpu-shares 1 --name db3 mongo

This time, Swarm returned the following error message.

1 Error response from daemon: no resources available to schedule container

We requested deployment of a container that requires one CPU, and Swarm got back to us saying
that there are no available nodes that fulfill that requirement. Before we proceed to explore other
constraints, please bear in mind that CPU Shares do not work in the same way with Swarm as when
applied to a Docker running on a single server. For more information regarding such a case, please
consult CPU share constraint²⁵¹ page for more information.

Let’s remove our containers and start over.

1 docker rm -f db1 db2

We can also use memory as a constraint. For example, we can direct Swarm to deploy a container
reserving one CPU and one GB of memory.

²⁵¹http://docs.docker.com/engine/reference/run/#cpu-share-constraint

http://docs.docker.com/engine/reference/run/#cpu-share-constraint
http://docs.docker.com/engine/reference/run/#cpu-share-constraint

Clustering And Scaling Services 290

1 docker run -d --cpu-shares 1 -m 1g --name db1 mongo

2

3 docker info

The output of the docker info command is as follows (limited to relevant parts).

1 ...

2 Nodes: 2

3 swarm-node-1: 10.100.192.201:2375

4 └ Status: Healthy

5 └ Containers: 3

6 └ Reserved CPUs: 1 / 1

7 └ Reserved Memory: 1 GiB / 1.535 GiB

8 ...

9 swarm-node-2: 10.100.192.202:2375

10 └ Status: Healthy

11 └ Containers: 2

12 └ Reserved CPUs: 0 / 1

13 └ Reserved Memory: 0 B / 1.535 GiB

14 ...

This time not only that one CPU is reserved, but almost all of thememory aswell.While we could not
demonstrate much when using CPU constraints, since our nodes have only one each, with memory
we have a bit bigger margin to experiment. For example, we can bring up three instances of Mongo
DB with 100 MB reserved for each.

1 docker run -d -m 100m --name db2 mongo

2

3 docker run -d -m 100m --name db3 mongo

4

5 docker run -d -m 100m --name db4 mongo

6

7 docker info

The output of the docker info command is as follows (limited to relevant parts).

Clustering And Scaling Services 291

1 ...

2 Nodes: 2

3 swarm-node-1: 10.100.192.201:2375

4 └ Status: Healthy

5 └ Containers: 3

6 └ Reserved CPUs: 1 / 1

7 └ Reserved Memory: 1 GiB / 1.535 GiB

8 ...

9 swarm-node-2: 10.100.192.202:2375

10 └ Status: Healthy

11 └ Containers: 5

12 └ Reserved CPUs: 0 / 1

13 └ Reserved Memory: 300 MiB / 1.535 GiB

14 ...

It is obvious that all of those three containers were deployed to the swarm-node-2. Swarm realized
that the second node had less available memory on the swarm-node-1 and decided to deploy the
new container to the swarm-node-2. That decision was repeated two more times since the same
constraints were used. As a result, the swarm-node-2 now has all those three containers running
and 300 MB of memory reserved. We can confirm that by checking the running processes.

1 docker ps --filter name=db --format "table {{.Names}}"

The output is as follows.

1 NAMES

2 swarm-node-2/db4

3 swarm-node-2/db3

4 swarm-node-2/db2

5 swarm-node-1/db1

There are many other ways we can give hints to Swarm where to deploy containers. We won’t
explore all of them. I invite you to check Docker documentation for Strategies²⁵² and Filters²⁵³.

At this moment, we have more than enough knowledge to attempt deployment automation to the
Docker Swarm cluster.

Before we proceed, let’s remove the containers we run until now.

²⁵²https://docs.docker.com/swarm/scheduler/strategy/
²⁵³https://docs.docker.com/swarm/scheduler/filter/

https://docs.docker.com/swarm/scheduler/strategy/
https://docs.docker.com/swarm/scheduler/filter/
https://docs.docker.com/swarm/scheduler/strategy/
https://docs.docker.com/swarm/scheduler/filter/

Clustering And Scaling Services 292

1 docker rm -f db1 db2 db3 db4

Automating Deployment With Docker Swarm and
Ansible

We are already familiar with Jenkins Workflow, and it should be relatively easy to extend this
knowledge to Docker Swarm deployments.

First things first. We need to provision our cd node with Jenkins.

1 ansible-playbook /vagrant/ansible/jenkins-node-swarm.yml \

2 -i /vagrant/ansible/hosts/prod

3

4 ansible-playbook /vagrant/ansible/jenkins.yml \

5 -c local

The two playbooks deployed the familiar Jenkins instance with two nodes. This time, the slaves we
are running are cd and swarm-master. Among other jobs, the playbook created the books-ms-swarm
job based on theMultibranchWorkflow. The only difference between this and the other multibranch
jobs we used earlier is in the Include branches filter that, this time, is set to swarm.

Clustering And Scaling Services 293

Figure 14-13: Configuration screen of the books-ms-swarm Jenkins job

Let’s index the branches and let the job run while we explore the Jenkinsfile²⁵⁴ located in the books-
ms swarm branch²⁵⁵.

Please open the books-ms-swarm²⁵⁶ job and click Branch Indexing followed by Run Now. Since there
is only one branch matching the specified filter, Jenkins will create one subproject called swarm and
start building it. If you are curious about the progress of the build, you can monitor the progress by
opening the build console²⁵⁷.

Examining the Swarm Deployment Playbook

The content of the Jenkins workflow defined in the Jenkinsfile²⁵⁸ is as follows.

²⁵⁴https://github.com/vfarcic/books-ms/blob/swarm/Jenkinsfile
²⁵⁵https://github.com/vfarcic/books-ms/tree/swarm
²⁵⁶http://10.100.198.200:8080/job/books-ms-swarm/
²⁵⁷http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/lastBuild/console
²⁵⁸https://github.com/vfarcic/books-ms/blob/swarm/Jenkinsfile

https://github.com/vfarcic/books-ms/blob/swarm/Jenkinsfile
https://github.com/vfarcic/books-ms/tree/swarm
https://github.com/vfarcic/books-ms/tree/swarm
http://10.100.198.200:8080/job/books-ms-swarm/
http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/lastBuild/console
https://github.com/vfarcic/books-ms/blob/swarm/Jenkinsfile
https://github.com/vfarcic/books-ms/blob/swarm/Jenkinsfile
https://github.com/vfarcic/books-ms/tree/swarm
http://10.100.198.200:8080/job/books-ms-swarm/
http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/lastBuild/console
https://github.com/vfarcic/books-ms/blob/swarm/Jenkinsfile

Clustering And Scaling Services 294

1 node("cd") {

2 def serviceName = "books-ms"

3 def prodIp = "10.100.192.200" // Modified

4 def proxyIp = "10.100.192.200" // Modified

5 def proxyNode = "swarm-master"

6 def registryIpPort = "10.100.198.200:5000"

7 def swarmPlaybook = "swarm.yml" // Modified

8 def proxyPlaybook = "swarm-proxy.yml" // Added

9 def instances = 1 // Added

10

11 def flow = load "/data/scripts/workflow-util.groovy"

12

13 git url: "https://github.com/vfarcic/${serviceName}.git"

14 flow.provision(swarmPlaybook) // Modified

15 flow.provision(proxyPlaybook) // Added

16 flow.buildTests(serviceName, registryIpPort)

17 flow.runTests(serviceName, "tests", "")

18 flow.buildService(serviceName, registryIpPort)

19

20 def currentColor = flow.getCurrentColor(serviceName, prodIp)

21 def nextColor = flow.getNextColor(currentColor)

22

23 flow.deploySwarm(serviceName, prodIp, nextColor, instances) // Modified

24 flow.runBGPreIntegrationTests(serviceName, prodIp, nextColor)

25 flow.updateBGProxy(serviceName, proxyNode, nextColor)

26 flow.runBGPostIntegrationTests(serviceName, prodIp, proxyIp, proxyNode, curr\

27 entColor, nextColor)

28 }

I added comments to the modified and added lines (when compared with Jenkinsfile from the
previous chapter) so that we can explore the differences from the Jenkinsfile defined in the blue-
green branch²⁵⁹.

The variables prodIp and proxyIp have been changed to point to the swarm-master node. This time,
we are using two Ansible playbooks to provision the cluster. The swarmPlaybook variable holds the
name of the playbook that configures the whole Swarm cluster while the proxyPlaybook variable
references the playbook in charge of setting up the nginx proxy on the swarm-master node. In “real
world” situations, Swarm master and the proxy service should be separated but, in this case, I opted
against an additional VM to save a bit of resources on your laptop. Finally, the instances variable
with the default value of 1 is added to the script. We’ll explore its usage shortly.

The only truly notable difference is the usage of the deploySwarm function that replaces deployBG. It

²⁵⁹https://github.com/vfarcic/books-ms/tree/blue-green

https://github.com/vfarcic/books-ms/tree/blue-green
https://github.com/vfarcic/books-ms/tree/blue-green
https://github.com/vfarcic/books-ms/tree/blue-green

Clustering And Scaling Services 295

is one more utility function defined in the workflow-util.groovy²⁶⁰ script. Its contents are as follows.

1 def deploySwarm(serviceName, swarmIp, color, instances) {

2 stage "Deploy"

3 withEnv(["DOCKER_HOST=tcp://${swarmIp}:2375"]) {

4 sh "docker-compose pull app-${color}"

5 try {

6 sh "docker network create ${serviceName}"

7 } catch (e) {}

8 sh "docker-compose -f docker-compose-swarm.yml \

9 -p ${serviceName} up -d db"

10 sh "docker-compose -f docker-compose-swarm.yml \

11 -p ${serviceName} rm -f app-${color}"

12 sh "docker-compose -f docker-compose-swarm.yml \

13 -p ${serviceName} scale app-${color}=${instances}"

14 }

15 putInstances(serviceName, swarmIp, instances)

16 }

As before, we start by pulling the latest container from the registry. The new addition is the creation
of a Docker network. Since it can be created only once, and all subsequent attempts will result in an
error, the sh command is enclosed inside a try/catch block that will prevent the script from failing.

The creation of the network is followed by deployment of the db and app targets. Unlike DB that,
in this scenario, is always deployed as a single instance, the app target might need to be scaled.
For that reason, the first one is deployed through the up and the other through the scale command
available through Docker Compose. The scale command utilizes the instances variable to determine
how many copies of the release should be deployed. We can increase or decrease their number
simply by changing the instances variable in the Jenkinsfile²⁶¹. Once such a change is committed to
the repository, Jenkins will run a new build and deploy as many instances as we specified.

Finally, we are putting the number of instances to Consul by invoking the helper function
putInstances which, in turn. executed a simple Shell command. Even though we won’t be using
the information right now, it will come in handy in the next chapter when we start building a
self-healing system.

That’s it. There were only a few changes we had to apply to the Jenkinsfile to have the blue-green
deployment extended from a single server to the whole Swarm cluster. Both Docker Swarm and
Jenkins Workflow proved to be very easy to work with, even easier to maintain, and, yet, very
powerful.

²⁶⁰https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
²⁶¹https://github.com/vfarcic/books-ms/blob/swarm/Jenkinsfile

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/books-ms/blob/swarm/Jenkinsfile
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/books-ms/blob/swarm/Jenkinsfile

Clustering And Scaling Services 296

By this time, the build of the swarm sub-project probably finished. We can validate that from the
build console²⁶² screen or, directly, by opening the books-ms-swarm²⁶³ job and confirming that
the status of the last build is represented with the blue ball. If you are curious why the success
is represented with blue instead of green color, please read the Why does Jenkins have blue balls?²⁶⁴
article.

Figure 14-14: The books-ms-swarm Jenkins job screen

Now that we understand what is behind the Jenkinsfile script and the build is finished, we can
manually validate that everything seems to be working correctly.

Running the Swarm Jenkins Workflow

The first run of the swarm²⁶⁵ subproject was initiated by Jenkins automatically once it finished
indexing branches. All that’s left for us is to double check that thewhole process was indeed executed
correctly.

This was the first deployment so the blue release should be running somewhere inside the cluster.
Let’s take a look where did Swarm decide to deploy our containers.

1 export DOCKER_HOST=tcp://10.100.192.200:2375

2

3 docker ps --filter name=books --format "table {{.Names}}"

The output of the ps command is as follows.

²⁶²http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/lastBuild/console
²⁶³http://10.100.198.200:8080/job/books-ms-swarm/
²⁶⁴https://jenkins-ci.org/blog/2012/03/13/why-does-jenkins-have-blue-balls/
²⁶⁵http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/

http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/lastBuild/console
http://10.100.198.200:8080/job/books-ms-swarm/
https://jenkins-ci.org/blog/2012/03/13/why-does-jenkins-have-blue-balls/
http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/
http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/lastBuild/console
http://10.100.198.200:8080/job/books-ms-swarm/
https://jenkins-ci.org/blog/2012/03/13/why-does-jenkins-have-blue-balls/
http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/

Clustering And Scaling Services 297

1 NAMES

2 swarm-node-2/booksms_app-blue_1

3 swarm-node-1/books-ms-db

In this case, Swarm deployed the books-ms container to the swarm-node-2 and the Mongo DB to the
swarm-node-1. We can also verify whether the service was correctly stored in Consul.

1 curl swarm-master:8500/v1/catalog/service/books-ms-blue \

2 | jq '.'

3

4 curl swarm-master:8500/v1/kv/books-ms/color?raw

5

6 curl swarm-master:8500/v1/kv/books-ms/instances?raw

The output of all three commands is as follows.

1 [

2 {

3 "ServicePort": 32768,

4 "ServiceAddress": "10.100.192.202",

5 "ServiceTags": null,

6 "ServiceName": "books-ms-blue",

7 "ServiceID": "swarm-node-2:booksms_app-blue_1:8080",

8 "Address": "10.100.192.202",

9 "Node": "swarm-node-2"

10 }

11]

12 ...

13 blue

14 ...

15 1

According to Consul, the release was deployed to swarm-node-2 (10.100.192.202) and has the port
32768. We are currently running the blue release, and have only one instance running.

Finally, we can double check that the service is indeed working by sending a few requests to it.

Clustering And Scaling Services 298

1 curl -H 'Content-Type: application/json' -X PUT -d \

2 '{"_id": 1,

3 "title": "My First Book",

4 "author": "John Doe",

5 "description": "Not a very good book"}' \

6 swarm-master/api/v1/books | jq '.'

7

8 curl swarm-master/api/v1/books | jq '.'

The first request was PUT, sending a signal to the service that we want to store the book. The second
retrieved the list of all books.

The automated process seems to be working correctly when run for the first time. We’ll execute the
build again and deploy the green release.

The Second Run of the Swarm Deployment Playbook

Let’s deploy the next release.

Please open the swarm subproject²⁶⁶ and click the Build Now link. The build will start, and we can
monitor it from the Console screen²⁶⁷. After a few minutes, the build will finish executing, and we’ll
be able to check the result.

1 docker ps -a --filter name=books --format "table {{.Names}}\t{{.Status}}"

The output of the ps command is as follows.

1 NAMES STATUS

2 swarm-node-2/booksms_app-green_1 Up 7 minutes

3 swarm-node-2/booksms_app-blue_1 Exited (137) 15 seconds ago

4 swarm-node-1/books-ms-db Up 10 hours

Sincewe run the green release, the blue release is in the Exited status.We can observe the information
about the currently running release from Consul.

1 curl swarm-master:8500/v1/catalog/service/books-ms-green \

2 | jq '.'

The response from the Consul request is as follows.

²⁶⁶http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/
²⁶⁷http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/lastBuild/console

http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/
http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/lastBuild/console
http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/
http://10.100.198.200:8080/job/books-ms-swarm/branch/swarm/lastBuild/console

Clustering And Scaling Services 299

1 [

2 {

3 "ModifyIndex": 3314,

4 "CreateIndex": 3314,

5 "Node": "swarm-node-2",

6 "Address": "10.100.192.202",

7 "ServiceID": "swarm-node-2:booksms_app-green_1:8080",

8 "ServiceName": "books-ms-green",

9 "ServiceTags": [],

10 "ServiceAddress": "10.100.192.202",

11 "ServicePort": 32770,

12 "ServiceEnableTagOverride": false

13 }

14]

Now we can test the service itself.

1 curl swarm-master/api/v1/books | jq '.'

Since we already have the Consul UI running, please open the http://10.100.192.200:8500/²⁶⁸ address
in your favorite browser to get a visual representation of services we deployed.

As an exercise, fork the books-ms²⁶⁹ repository and modify the job to use you repository. Open the
Jenkinsfile inside the swarm branch, change it to deploy three instances of the service, and push the
changes. Run the build again and, once it’s finished, confirm that three instances were deployed to
the cluster.

Cleaning Up

This concludes our tour of Docker Swarm. We’ll use it more throughout the next chapters. Before
moving to the next subject, lets destroy the VMs. We’ll create them again when we need them.

1 exit

2

3 vagrant destroy -f

The solution we developed still has quite a few problems. The system is not fault tolerant, and is
difficult to monitor. The next chapter will address the first of those problems through creation of a
self-healing system.

²⁶⁸http://10.100.192.200:8500/
²⁶⁹https://github.com/vfarcic/books-ms

http://10.100.192.200:8500/
https://github.com/vfarcic/books-ms
http://10.100.192.200:8500/
https://github.com/vfarcic/books-ms

Self-Healing Systems
Healing takes courage, and we all have courage, even if we have to dig a little to find it.

– Tori Amos

Let’s face it. The systems we are creating are not perfect. Sooner or later, one of our applications
will fail, one of our services will not be able to handle the increased load, one of our commits will
introduce a fatal bug, a piece of hardware will break, or something entirely unexpected will happen.

How do we fight the unexpected? Most of us are trying to develop a bullet proof system. We are
attempting to create what no one did before. We strive for the ultimate perfection, hoping that the
result will be a system that does not have any bugs, is running on hardware that never fails, and can
handle any load. Here’s a tip. There is no such thing as perfection. No one is perfect, and nothing is
without fault. That does not mean that we should not strive for perfection. We should, when time
and resources are provided. However, we should also embrace the inevitable, and design our systems
not to be perfect, but able to recuperate from failures, and able to predict likely future. We should
hope for the best but prepare for the worst.

There are plenty of examples of resilient systems outside software engineering, none of them better
than life itself. We can take ourselves, humanity, as an example. We’re the result of a very long
experiment based on small and incremental evolutionary improvements, performed over millions
of years. We can learn a lot from a human body, and apply that knowledge to our software and
hardware. One of the fascinating abilities we (humans) possess is the capacity to self-heal.

Human body has an amazing capacity to heal itself. The most fundamental unit of human body is
cell. Throughout our life, cells inside our body are working to bring us back to a state of equilibrium.
Each cell is a dynamic, living unit that is continuously monitoring and adjusting its own processes,
working to restore itself according to the original DNA code it was createdÂ with, and to maintain
balance within the body. Cells have the ability to heal themselves, as well as to make new cells
that replace those that have been permanently damaged or destroyed. Even when a large number of
cells are destroyed, the surrounding cells replicate to make new cells, thereby quickly replacing the
cells that were destroyed. This ability does not make us, individuals, immune to death, but it does
make us very resilient. We are continuously attacked by viruses. We succumb to diseases and yet, in
most cases, we come out victorious. However, looking at us as individuals would mean that we are
missing the big picture. Even when our own lives end, the life itself not only survives, but thrives,
ever growing, and ever adapting.

We can think of a computer system as a human body that consists of cells of various types. They can
be hardware or software. When they are software units, the smaller they are, the easier it is for them
to self-heal, recuperate from failures, multiply, or even get destroyed when that is needed. We call
those small units microservices, and they can, indeed, have behaviors similar to those observed in a

300

Self-Healing Systems 301

human body. The microservices-based system we are building can be made in a way that is can self-
heal. That is not to say that self-healing we are about to explore is applicable only to microservices.
It is not. However, like most other techniques we explored, self-healing can be applied to almost
any type of architecture, but provides best results when combined with microservices. Just like life
that consists of individuals that form a whole ecosystem, each computer system is part of something
bigger. It communicates, cooperates, and adapts to other systems forming a much larger whole.

Self-Healing Levels and Types

In software systems, the self-healing term describes any application, service, or a system that can
discover that it is not working correctly and, without any human intervention, make the necessary
changes to restore itself to the normal or designed state. Self-healing is about making the system
capable of making its decisions by continually checking and optimizing its state and automatically
adapting to changing conditions. The goal is to make fault tolerant and responsive system capable
of responding to changes in demand and recuperation from failures.

Self-healing systems can be divided into three levels, depending on size and type of resources we
are monitoring, and acting upon. Those levels are as follows.

• Application level
• System level
• Hardware level

We’ll explore each of those three types separately.

Self-Healing on the Application Level

Application level healing is the ability of an application, or a service, to heal itself internally.
Traditionally, we’re used to capturing problems through exceptions and, in most cases, logging them
for further examination. When such an exception occurs, we tend to ignore it and move on (after
logging), as if nothing happened, hoping for the best in the future. In other cases, we tend to stop the
application if an exception of certain type occurs. An example would be a connection to a database.
If the connection is not established when the application starts, we often stop the whole process.
If we are a bit more experienced, we might try to repeat the attempt to connect to the database.
Hopefully, those attempts are limited, or we might easily enter a never ending loop, unless database
connection failure was temporary and the DB gets back online soon afterwards. With time, we
got better ways to deal with problems inside applications. One of them is Akka²⁷⁰. It’s usage of
supervisor, and design patterns it promotes, allow us to create internally self-healing applications
and services. Akka is not the only one. Many other libraries and frameworks enable us to create fault
tolerant applications capable of recuperation from potentially disastrous circumstances. Since we

²⁷⁰http://akka.io/

http://akka.io/
http://akka.io/

Self-Healing Systems 302

are trying to be agnostic to programming languages, I’ll leave it to you, dear reader, investigation of
ways to self-heal your applications internally. Bear in mind that self-healing in this context refers to
internal processes and does not provide, for example, recuperation from failed processes. Moreover,
if we adopt microservices architecture, we can quickly end up with services written in different
languages, using different frameworks, and so on. It is truly up to developers of each service to
design it in a way that it can heal itself and recuperate from failures.

Let’s jump into the second level.

Self-Healing on the System Level

Unlike the application level healing that depends on a programming language and design patterns
that we apply internally, system level self-healing can be generalized and be applied to all services
and applications, independently from their internals. This is the type of self-healing that we can
design on the level of the whole system. While there are many things that can happen at the system
level, the two most commonly monitored aspects are failures of processes and response time. If a
process fails, we need to redeploy the service, or restart the process. On the other hand, if the response
time is not adequate, we need to scale, or descale, depending whether we reached upper or lower
response time limits. Recuperating from process failures is often not enough. While such actions
might restore our system to the desired state, human intervention is often still needed. We need to
investigate the cause of the failure, correct the design of the service, or fix a bug. That is, self-healing
often goes hand in hand with investigation of the causes of that failure. The system automatically
recuperates and we (humans) try to learn from those failures, and improve the system as a whole.
For that reason, some kind of a notification is required as well. In both cases (failures and increased
traffic), the system needs to monitor itself and take some actions.

How does the system monitor itself? How does it check the status of its components? There are
many ways, but two most commonly used are TTLs and pings.

Time-To-Live (TTL)

Time-to-live (TTL) checks expect a service, or an application, to periodically confirm that it is
operational. The system that receives TTL signals keeps track of the last known reported state for a
given TTL. If that state is not updated within a predefined period, the monitoring system assumes
that the service failed and needs to be restored to its designed state. For example, a healthy service
could send an HTTP request announcing that it is alive. If the process the service is running in fails,
it will be incapable to send the request, TTL will expire, and reactive measures will be executed.

The main problem with TTL is coupling. Applications and services need to be tied to the monitoring
system. Implementing TTL would be one of the microservices anti-patterns since we are trying to
design them in a way that they are as autonomous as possible. Moreover, microservices should have
a clear function and a single purpose. Implementing TTL requests inside them would add additional
functionality and complicate the development.

Self-Healing Systems 303

Figure 15-01: System level self-healing with time-to-live (TTL)

Pinging

The idea behind pinging is to check the state of an application, or a service, externally. The
monitoring system should ping each service periodically and, if no response is received, or the
content of the response is not adequate, execute healing measures. Pinging can come in many forms.
If a service exposes HTTP API, it is often a simple request, where desired response should be HTTP
status in 2XX range. In other cases, when HTTP API is not exposed, pinging can be done with a
script, or any other method that can validate the state of the service.

Pinging is opposite from TTL, and, when possible, is a preferable way of checking the status of
individual parts of the system. It removes repetition, coupling, and complications that could occur
when implementing TTL inside each service.

Self-Healing Systems 304

Figure 15-02: System level self-healing with pings

Self-Healing on the Hardware Level

Truth be told, there is no such a thing as hardware self-healing. We cannot have a process that
will automatically heal failed memory, repare broken hard disk, fix malfunctioning CPU, and so on.
What healing on this level truly means is redeployment of services from an unhealthy to one of
the healthy nodes. As with the system level, we need to periodically check the status of different
hardware components, and act accordingly. Actually, most healing caused due to hardware level will
happen at the system level. If hardware is not working correctly, chances are that the service will
fail, and thus be fixed by system level healing. Hardware level healing is more related to preventive
types of checks that we’ll discuss shortly.

Self-Healing Systems 305

Figure 15-03: Hardware level self-healing

Besides the division based on the check levels, we can also divide it based on the moment actions
are taken. We can react to a failure, or we can try to prevent it.

Reactive healing

Most of the organizations that implemented some kind of self-healing systems focused on reactive
healing. After a failure is detected, the system reacts and restores itself to the designed state. A
service process is dead, ping returns the code 404 (not found), corrective actions are taken, and the
service is operational again. This works no matter whether service failed because its process failed,
or the whole node stopped being operational (assuming that we have a system that can redeploy
to a healthy node). This is the most important type of healing and, at the same time, the easiest
one to implement. As long as we have all the checks in place, as well as actions that should be
performed in case of a failure, and we have each service scaled to at least two instances distributed
on separate physical nodes, we should (almost) never have downtime. I said almost never because, for
example, the whole datacenter might loose power, thus stopping all nodes. It’s all about evaluating
risks against costs of preventing those risks. Sometimes, it is worthwhile to have two datacenters
in different locations, and in other cases it’s not. The objective is to strive towards zero-downtime,
while accepting that some cases are not worthwhile trying to prevent.

No matter whether we are striving for zero-downtime, or almost zero-downtime, reactive self-
healing should be a must for any but smallest settings, especially since it does not require big
investment. You might invest in spare hardware, or you might invest in separate datacenters. Those
decisions are not directly related with self-healing, but with the level of risks that are acceptable
for a given use case. Reactive self-healing investment is primarily in knowledge how to do it, and
time to implement it. While time is an investment in itself, we can spend it wisely, and create a
general solution that would work for (almost) all cases, thus reducing the time we need to spend
implementing such a system.

Self-Healing Systems 306

Preventive healing

The idea behind preventive healing is to predict the problems we might have in the future, and act
in a way that those problems are avoided. How do we predict the future? To be more precise, what
data do we use to predict the future?

Relatively easy, but less reliable way of predicting the future, is to base assumptions on (near) real-
time data. For example, if one of the HTTP requests we’re using to check the health of a service
responded in more than 500 milliseconds, we might want to scale that service. We can even do the
opposite. Following the same example, if it took less than 100 milliseconds to receive the response,
we might want to descale the service, and reassign those resources to another one that might need
it more. The problem with taking into account the current status when predicting the future is
variability. If it took a long time between the request and the response, it might indeed be the sign
that scaling is needed, but it might also be a temporary increase in traffic, and the next check (after
the traffic spike is gone) will deduce that there is a need to descale. If microservices architecture
is applied, this can be a minor issue, since they are small and easy to move around. They are easy
to scale, and descale. Monolithic applications are often much more problematic if this strategy is
chosen.

If historical data is taken into account, preventive healing becomes much more reliable but, at the
same time, much more complicated to implement. Information (response times, CPU, memory, and
so on) needs to be stored somewhere and, often complex, algorithms need to be employed to evaluate
tendencies, andmake conclusions. For example, wemight observe that, during the last hour, memory
usage has been steadily increasing, and that it reached a critical point of, let’s say, 90%. That would
be a clear indication that the service that is causing that increase needs to be scaled. The system
could also take into account longer period of time, and deduce that every Monday there is a sudden
increase in traffic, and scale services well in advance to prevent long responses. What would be, for
example, the meaning of a steady increase in memory usage from the moment a service is deployed,
and sudden decrease when a new version is released? Probably memory leaks and, in such a case,
the system would need to restart the application when certain threshold is reached, and hope that
developers would fix the issue (hence the need for notifications).

Let us change the focus, and discuss architecture.

Self-Healing Architecture

No matter the internal processes and tools, every self-healing system will have some common
elements.

In the very beginning, there is a cluster. A single server cannot be made fault tolerant. If a piece of
its hardware fails, there is nothing we can do to heal that. There is no readily available replacement.
Therefore, the system must start with a cluster. It can be composed out of two or two hundred
servers. The size is not of the essence, but the ability to move from one hardware to another in the
case of a failure. Bear in mind that we always need to evaluate benefits versus costs. If financially

Self-Healing Systems 307

viable, we would have at least two physically and geographically separated datacenters. In such a
case, if there is a power outage in one, the other one would be fully operational. However, in many
instances that is not a financially viable option.

Figure 15-04: Self-healing system architecture: Everything starts with a cluster

Once we have the cluster up and running, we can begin deploying our services. However, managing
services inside a cluster without some orchestrator is tedious, at best. It requires time and often ends
up with a very unbalanced usage of resources.

Figure 15-05: Self-healing system architecture: Services are deployed to the cluster, but with a very unbalanced
usage of resources

In most cases, people treat a cluster as a set of individual servers, which is wrong, knowing that
today we have tools at our disposal that can help us do the orchestration in a much better way.
With Docker Swarm²⁷¹, Kubernetes²⁷², or Apache Mesos²⁷³, we can solve the orchestration within a
cluster. Cluster orchestration is important, not only to ease the deployment of our services, but also
as a way to provide fast re-deployments to healthy nodes in case of a failure (be it of software or
hardware nature). Bear in mind that we need at least two instances of every service running behind
a proxy. Given such a situation, if one instance fails, the others can take over its load, thus avoiding
any downtime while the system re-deploys the failed instance.

²⁷¹https://docs.docker.com/swarm/
²⁷²http://kubernetes.io/
²⁷³http://mesos.apache.org/

https://docs.docker.com/swarm/
http://kubernetes.io/
http://mesos.apache.org/
https://docs.docker.com/swarm/
http://kubernetes.io/
http://mesos.apache.org/

Self-Healing Systems 308

Figure 15-06: Self-healing system architecture: Some deployment orchestrator is required to distribute services
across the cluster

The basis of any self-healing system is monitoring of the state of deployed services, or applications,
as well as the underlying hardware. The only way we can monitor them is to have information
about their existence. That information can be available in many different forms, ranging from
manually maintained configuration files, through traditional databases, all the way until highly
available distributed service registries like Consul²⁷⁴, etcd²⁷⁵, or Zookeeper²⁷⁶. In some cases, the
service registry can be chosen by us, while in others it comes as part of the cluster orchestrator. For
example, Docker Swarm has the flexibility that allows it to work with a couple of registries, while
Kubernetes is tied to etcd.

Figure 15-07: Self-healing system architecture: Primary requirement for monitoring the state of the system is to
have the information of the system stored service registry

No matter the tool we choose to act as a service registry, the next obstacle is to put the information

²⁷⁴https://www.consul.io/
²⁷⁵https://github.com/coreos/etcd
²⁷⁶https://zookeeper.apache.org/

https://www.consul.io/
https://github.com/coreos/etcd
https://zookeeper.apache.org/
https://www.consul.io/
https://github.com/coreos/etcd
https://zookeeper.apache.org/

Self-Healing Systems 309

into the service registry of choice. The principle is a simple one. Something needs to monitor
hardware and services and update the registry whenever a new one is added, or an existing one
is removed. There are plenty of tools that can do that. We are already familiar with Registrator²⁷⁷,
which fulfills this role pretty well. As with service registries, some cluster orchestrators already
come with their own ways to register and de-register services. No matter which tool we choose, the
primary requirement is to be able to monitor the cluster and send information to service registry in
near-realtime.

Figure 15-08: Self-healing system architecture: Service registry is useless if nomechanismwill monitor the system
and store new information

Now that we have the cluster with services up and running, and we have the information about the
system in the service registry, we can employ some health monitoring that will detect anomalies.
Such a tool needs to know not only what the desired state is, but, also, what the actual situation is
at any moment. Consul Watches²⁷⁸ can fulfill this role while Kubernetes and Mesos come with their
own tools for this type of tasks. In a more traditional environment, Nagios²⁷⁹ or Icinga²⁸⁰ (only to
name a few), can fulfill this role as well.

²⁷⁷https://github.com/gliderlabs/registrator
²⁷⁸https://www.consul.io/docs/agent/watches.html
²⁷⁹https://www.nagios.org/
²⁸⁰https://www.icinga.org/

https://github.com/gliderlabs/registrator
https://www.consul.io/docs/agent/watches.html
https://www.nagios.org/
https://www.icinga.org/
https://github.com/gliderlabs/registrator
https://www.consul.io/docs/agent/watches.html
https://www.nagios.org/
https://www.icinga.org/

Self-Healing Systems 310

Figure 15-09: Self-healing system architecture:With all the relevant information stored in a service registry, some
health monitoring tools can utilize it to verify whether the desired state is maintained

The next piece of the puzzle is a tool that would be able to execute corrective actions. When the
health monitor detects an anomaly, it would send a message to perform a corrective measure. As
a minimum, that corrective action should send a signal to the cluster orchestrator, which, in turn,
would redeploy the failed service. Even if a failure was caused by a hardware problem, cluster
orchestrator would (temporarily) fix that by redeploying the service to a healthy node. In most cases,
corrective actions are not that simple. There could be amechanism to notify interested parties, record
what happened, revert to an older version of the service, and so on. We already adopted Jenkins,
and it is a perfect fit to act as the tool that can receive a message from the health monitor and, as a
result, initiate corrective actions.

Self-Healing Systems 311

Figure 15-10: Self-healing system architecture: As aminimum, corrective action should send a signal to the cluster
orchestrator to redeploy the service that failed

The process, as it is for now, is dealing only with reactive healing. The system is continuously
monitored and, if a failure is detected, corrective actions are taken, which, in turn, will restore the
system to the desired state. Can we take it a step further and try to accomplish preventive healing?
Can we predict the future and act accordingly? In many cases we can, in some we can’t. We cannot
know that a hard disk will fail tomorrow. We cannot predict that there will be an outage today at
noon. However, in some cases, we can see that the traffic is increasing, and will soon reach a point
that will require some of our services to be scaled. We can predict that a marketing campaign we are
about to launch will increase the load. We can learn from our mistakes, and teach the system how to
behave in certain situations. The essential elements of such a set of processes are similar to those we
should employ for reactive healing. We need a place to store data and a process that collects them.
Unlike service registry that deals with a relatively small amount of data and benefits from being
distributed, preventive healing requires quite bigger storage and capabilities that would allow us to
perform some analytic operations.

Self-Healing Systems 312

Figure 15-11: Self-healing system architecture: Preventive healing requires historical data to be analyzed

Similarly to the registrator service, we’ll also need some data collector that will be sending historical
data. That data can be quite massive and include, but not be limited by, CPU, HD, network traffic,
system and service logs, and so on. Unlike the registrator that listens to events, mostly generated by
the cluster orchestrator, data collector should be continuously collecting data, digesting the input,
and producing an output that should be stored as historical data.

Figure 15-12: Self-healing system architecture: Preventive healing requires vast quantities of data to be collected
continuously

We already used some of the tools needed for reactive self-healing. Docker Swarm can be used as
the cluster orchestrator, Registrator and Consul for service discovery, and Jenkins for performing,

Self-Healing Systems 313

among other duties, corrective actions. The only tool that we haven’t used are two subsets of Consul;
checks and watches. Preventive healing will require exploration of some new processes and tools,
so we’ll leave it for later on.

Figure 15-13: Self-healing system architecture: One of the combinations of tools

Let’s see if we can set up a sample reactive self-healing system.

Self-Healing with Docker, Consul Watches, and Jenkins

The good news is that we already used all the tools that we require to make a reactive self-healing
system. We have Swarm that will make sure that containers will be deployed to healthy nodes (or
at least nodes that are operational). We have Jenkins that can be used to execute the healing process
and, potentially, send notifications. Finally, we can use Consul not only to store service information,
but also to preform health checks and send requests to Jenkins. The only piece we haven’t used until
now are Consul watches that can be programmed to perform health checks.

One thing to note about how Consul does health checks is that it differs from traditional
way Nagios²⁸¹ and other similar tools are operating. Consul avoids the thundering herd
problem by using gossip, and only alerts on state changes.

As always, we’ll start by creating VMs we’ll use throughout the rest of the chapter. We’ll create the
familiar combination of one cd and three swarm servers (one master and two nodes).

²⁸¹https://www.nagios.org/

https://www.nagios.org/
https://www.nagios.org/

Self-Healing Systems 314

Setting Up the Environments

The following command will create the four VMs we’ll use in this chapter. We’ll create the cd node
and use it to provision the other nodes with Ansible. This VM will also host Jenkins, that will be an
important part of the self-healing process. The other three VMs will form the Swarm cluster.

1 vagrant up cd swarm-master swarm-node-1 swarm-node-2

With all the VMs operational, we can proceed and set up the Swarm cluster. We’ll start by
provisioning the cluster in the same way as we did before, and then discuss changes we need to
make to it so that it can be self-healed.

1 vagrant ssh cd

2

3 ansible-playbook /vagrant/ansible/swarm.yml \

4 -i /vagrant/ansible/hosts/prod

Finally, the time has come to provision the cd server with Jenkins.

1 ansible-playbook /vagrant/ansible/jenkins-node-swarm.yml \

2 -i /vagrant/ansible/hosts/prod

3

4 ansible-playbook /vagrant/ansible/jenkins.yml \

5 --extra-vars "main_job_src=service-healing-config.xml" \

6 -c local

We reached the point where the whole cluster is operational, and Jenkins server will be up and
running soon. We set one Swarm master (swarm-master), two Swarm nodes (swarm-node-1 and
swarm-node-2), and one server with Ansible and, soon to be running, Jenkins (cd). Feel free to
continue reading while Jenkins provisioning is running. We won’t need it right away.

Setting Up Consul Health Checks and Watches for Monitoring
Hardware

We can send instructions to Consul to perform periodic checks of services or entire nodes. It does
not come with predefined checks. Instead, it runs scripts, performs HTTP requests, or wait for TTL
signals defined by us. While the lack of predefined checks might seem like a disadvantage, it gives
us the freedom to design the process as we see fit. In case we’re using scripts to perform checks,
Consul will expect them to exit with certain codes. If we exit from the check script with the code
0, Consul will assume that everything works correctly. Exit code 1 is expected to be a warning, and
the exit code 2 is an error.

We’ll start by creating a few scripts that will perform hardware checks. Getting information of, let’s
say, hard disk utilization is relatively easy with the df command.

Self-Healing Systems 315

1 df -h

We used the -h argument to output human-readable information, and the output is as follows.

1 Filesystem Size Used Avail Use% Mounted on

2 udev 997M 12K 997M 1% /dev

3 tmpfs 201M 440K 200M 1% /run

4 /dev/sda1 40G 4.6G 34G 13% /

5 none 4.0K 0 4.0K 0% /sys/fs/cgroup

6 none 5.0M 0 5.0M 0% /run/lock

7 none 1001M 0 1001M 0% /run/shm

8 none 100M 0 100M 0% /run/user

9 none 465G 118G 347G 26% /vagrant

10 none 465G 118G 347G 26% /tmp/vagrant-cache

Bear in mind that in your case the output might be slightly different.

What we truly need are numbers from the root directory (the third row in the output). We can
filter the output of the df command so that only the row with the value / of the last column is
displayed. After the filter, we should extract the percentage of used disk space (column 5). While
we are extracting data, we might just as well get the disk size (column 2), and the amount of used
space (column 3). Data that we extract should be stored as variables that we could use later on. The
commands we can use to accomplish all that is as follows.

1 set -- $(df -h | awk '$NF=="/"{print $2" "$3" "$5}')

2

3 total=$1

4

5 used=$2

6

7 used_percent=${3::-1}

Since the value that represents the used space percentage contains the % sign, we removed the last
character before assigning the value to the used_percent variable.

We can double-check whether the variables we created contain correct values with a simple printf
command.

1 printf "Disk Usage: %s/%s (%s%%)\n" $used $total $used_percent

The output of the last command is as follows.

Self-Healing Systems 316

1 Disk Usage: 4.6G/40G (13%)

The only thing left is to exit with 1 (warning) or 2 (error) when a threshold is reached.We’ll define the
error threshold as 95% and warning as 80%. The only thing missing is a simple if/elif/else statement.

1 if [$used_percent -gt 95]; then

2 echo "Should exit with 2"

3 elif [$used_percent -gt 80]; then

4 echo "Should exit with 1"

5 else

6 echo "Should exit with 0"

7 fi

For testing purposes, we put echos. The script that we are about to make should exit with 2, 1 or 0.

Let’s move into the swarm-master node, create the script, and test it.

1 exit

2

3 vagrant ssh swarm-master

We’ll start by creating a directory where Consul scripts will reside.

1 sudo mkdir -p /data/consul/scripts

Now we can create the script with the commands we practiced.

1 echo '#!/usr/bin/env bash

2

3 set -- $(df -h | awk '"'"'$NF=="/"{print $2" "$3" "$5}'"'"')

4 total=$1

5 used=$2

6 used_percent=${3::-1}

7 printf "Disk Usage: %s/%s (%s%%)\n" $used $total $used_percent

8 if [$used_percent -gt 95]; then

9 exit 2

10 elif [$used_percent -gt 80]; then

11 exit 1

12 else

13 exit 0

14 fi

15 ' | sudo tee /data/consul/scripts/disk.sh

16

17 sudo chmod +x /data/consul/scripts/disk.sh

Self-Healing Systems 317

Let’s try it out. Since there’s quite a lot of free disk space, the script should echo the disk usage and
return zero.

1 /data/consul/scripts/disk.sh

The command provided an output similar to the following.

1 Disk Usage: 3.3G/39G (9%)

We can easily display the exit code of the last command with $?.

1 echo $?

The echo returned zero, and the script seems to be working. You can test the rest of exit codes by
modifying the threshold to be below the current disk usage. I’ll leave that to you, as a simple exercise.

Consul check threshold exercise
Modify the disk.sh script in a way that warning and error thresholds are lower than the
current HD usage. Test the changes by running the script and outputting the exit code.
Once the exercise is done, revert the script to its original values.

Now that we have the script that checks the disk usage, we should tell Consul about its existence.
Consul uses JSON format for specifying checks. The definition that utilizes the script we just created
is as follows.

1 {

2 "checks": [

3 {

4 "id": "disk",

5 "name": "Disk utilization",

6 "notes": "Critical 95% util, warning 80% util",

7 "script": "/data/consul/scripts/disk.sh",

8 "interval": "10s"

9 }

10]

11 }

That JSON would tell Consul that there is a check with the ID disk, name Disk utilization and notes
Critical 95% util, warning 80% util. The name and notes are purely for visualization purposes (as
you’ll see soon). Next, we are specifying the path to the script to be /data/consul/scripts/disk.sh.
Finally, we are telling Consul to run the script every 10 seconds.

Let’s create the JSON file.

Self-Healing Systems 318

1 echo '{

2 "checks": [

3 {

4 "id": "disk",

5 "name": "Disk utilization",

6 "notes": "Critical 95% util, warning 80% util",

7 "script": "/data/consul/scripts/disk.sh",

8 "interval": "10s"

9 }

10]

11 }' | sudo tee /data/consul/config/consul_check.json

When we started Consul (through the Ansible playbook), we specified that configuration files are
located in the /data/consul/config/ directory. We still need to reload it, so that it picks up the new
file we just created. The easiest way to reload Consul is by sending it the HUP signal.

1 sudo killall -HUP consul

We managed to create hard disk checks in Consul. It will run the script every ten seconds and,
depending on its exit code, determine the health of the node it runs on (in this case swarm-master).

Self-Healing Systems 319

Figure 15-14: Hard disk checks in Consul

Let’s take a look at the Consul UI by opening http://10.100.192.200:8500/ui/²⁸² from a browser. Once
the UI is opened, please click the Nodes button, and then the swarm-master node. Among other
information, you’ll see two checks. One of them is Serf Health Status. It’s Consul’s internal check
based on TTL. If one of the Consul nodes is down, that information will be propagated throughout
the cluster. The check check, called Disk utilization, is the one we just created, and, hopefully, the
status is passing.

²⁸²http://10.100.192.200:8500/ui/

http://10.100.192.200:8500/ui/
http://10.100.192.200:8500/ui/

Self-Healing Systems 320

Figure 15-15: Hard disk checks in Consul UI

Now that we know how easy it is to add a check in Consul, we should define what action should
be performed when a check fails. We do that through Consul watches. As with checks, Consul does
not offer an out-of-the-box final solution. It provides a mechanism for us to create the solution that
fits our needs.

Consul supports seven different types of watches.

• key - Watch a specific KV pair
• keyprefix - Watch a prefix in the KV store
• services - Watch the list of available services
• nodes - Watch the list of nodes
• service - Watch the instances of a service
• checks - Watch the value of health checks
• event - Watch for custom user events

Each of the types is useful in certain situations and, together, they provide a very comprehensive
framework for building your self-healing, fault tolerant, system. We’ll concentrate on the checks

Self-Healing Systems 321

type, since it will allow us to utilize the hard disk check we created earlier. Please consult the
watches²⁸³ documentation for more info.

We’ll start by creating the script that will be run by Consul watcher. Themanage_watches.sh script
is as follows (please don’t run it).

1 #!/usr/bin/env bash

2

3 RED="\033[0;31m"

4 NC="\033[0;0m"

5

6 read -r JSON

7 echo "Consul watch request:"

8 echo "$JSON"

9

10 STATUS_ARRAY=($(echo "$JSON" | jq -r ".[].Status"))

11 CHECK_ID_ARRAY=($(echo "$JSON" | jq -r ".[].CheckID"))

12 LENGTH=${#STATUS_ARRAY[*]}

13

14 for ((i=0; i<=$(($LENGTH -1)); i++))

15 do

16 CHECK_ID=${CHECK_ID_ARRAY[$i]}

17 STATUS=${STATUS_ARRAY[$i]}

18 echo -e "${RED}Triggering Jenkins job http://10.100.198.200:8080/job/hardwar\

19 e-notification/build${NC}"

20 curl -X POST http://10.100.198.200:8080/job/hardware-notification/build \

21 --data-urlencode json="{\"parameter\": [{\"name\":\"checkId\", \"value\"\

22 :\"$CHECK_ID\"}, {\"name\":\"status\", \"value\":\"$STATUS\"}]}"

23 done

We started by defining RED and NC variables that will help us paint critical parts of the output in
red. Then, we are reading the Consul input and storing it into the JSON variable. That is followed by
the creation of STATUS_ARRAY and CHECK_ID_ARRAY arrays that will hold Status and CheckID
values for each element from the JSON. Finally, those arrays allow us to iterate through each item,
and send a POST request to Jenkins to build the hardware-notification job (we’ll take a look at it
later). The request uses “Jenkins friendly” format for passing the CHECK_ID and STATUS variables.
Please consult Jenkins remote access API²⁸⁴ for more information.

Let’s create the script.

²⁸³https://www.consul.io/docs/agent/watches.html
²⁸⁴https://wiki.jenkins-ci.org/display/JENKINS/Remote+access+API

https://www.consul.io/docs/agent/watches.html
https://wiki.jenkins-ci.org/display/JENKINS/Remote+access+API
https://www.consul.io/docs/agent/watches.html
https://wiki.jenkins-ci.org/display/JENKINS/Remote+access+API

Self-Healing Systems 322

1 echo '#!/usr/bin/env bash

2

3 RED="\033[0;31m"

4 NC="\033[0;0m"

5

6 read -r JSON

7 echo "Consul watch request:"

8 echo "$JSON"

9

10 STATUS_ARRAY=($(echo "$JSON" | jq -r ".[].Status"))

11 CHECK_ID_ARRAY=($(echo "$JSON" | jq -r ".[].CheckID"))

12 LENGTH=${#STATUS_ARRAY[*]}

13

14 for ((i=0; i<=$(($LENGTH -1)); i++))

15 do

16 CHECK_ID=${CHECK_ID_ARRAY[$i]}

17 STATUS=${STATUS_ARRAY[$i]}

18 echo -e "${RED}Triggering Jenkins job http://10.100.198.200:8080/job/hardwar\

19 e-notification/build${NC}"

20 curl -X POST http://10.100.198.200:8080/job/hardware-notification/build \

21 --data-urlencode json="{\"parameter\": [{\"name\":\"checkId\", \"value\"\

22 :\"$CHECK_ID\"}, {\"name\":\"status\", \"value\":\"$STATUS\"}]}"

23 done

24 ' | sudo tee /data/consul/scripts/manage_watches.sh

25

26 sudo chmod +x /data/consul/scripts/manage_watches.sh

Now that we have the script that will be executed whenever there is a check with the warning or
critical status, we’ll inform Consul about its existence. The Consul watches definition is as follows.

1 {

2 "watches": [

3 {

4 "type": "checks",

5 "state": "warning",

6 "handler": "/data/consul/scripts/manage_watches.sh >>/data/consul/logs/wat\

7 ches.log"

8 }, {

9 "type": "checks",

10 "state": "critical",

11 "handler": "/data/consul/scripts/manage_watches.sh >>/data/consul/logs/wat\

12 ches.log"

Self-Healing Systems 323

13 }

14]

15 }

This definition should be self-explanatory. We defined two watches, both of type checks. The first
one will be run in case of a warning, and the second when a check is in the critical state. We’re
trying to keep things simple by specifying, in both instances, the same handlermanage_watches.sh.
In a “real world” setting, you should differentiate those two states and run different actions.

Let’s create the watches file.

1 echo '{

2 "watches": [

3 {

4 "type": "checks",

5 "state": "warning",

6 "handler": "/data/consul/scripts/manage_watches.sh >>/data/consul/logs/wat\

7 ches.log"

8 }, {

9 "type": "checks",

10 "state": "critical",

11 "handler": "/data/consul/scripts/manage_watches.sh >>/data/consul/logs/wat\

12 ches.log"

13 }

14]

15 }' | sudo tee /data/consul/config/watches.json

Before we proceed, and reload Consul, we should have a quick discussion about the Jenkins job
hardware-notification. It was already created when we provisioned Jenkins. Its configuration can be
seen by opening http://10.100.198.200:8080/job/hardware-notification/configure²⁸⁵. It contains two
parameters, checkId and status.We’re using those two parameters as away to avoid creating separate
jobs for each hardware check. Whenever Consul watcher sends the POST request to build this job,
it passes values to those two variables. In the build phase, we are simply running an echo command
that sends values of those two variables to standard output (STDOUT). In a “real world” situation,
this job would do some actions. For example, if disk space is low, it could remove unused logs and
temporary files. Another example would be creation of additional nodes, if we’re using one of the
cloud services like Amazon AWS. In some other situations, no automated reaction is possible. In
any case, besides concrete actions like those, this job should also send some kind of a notification
(email, instant messaging, and so on) so that operators are informed about the potential problem.
Since those situations would be difficult to reproduce locally, the initial definition of this job does
nothing of the sort. I’ll leave it up to you to extend it for your own needs.

²⁸⁵http://10.100.198.200:8080/job/hardware-notification/configure

http://10.100.198.200:8080/job/hardware-notification/configure
http://10.100.198.200:8080/job/hardware-notification/configure

Self-Healing Systems 324

The hardware-notification Jenkins job exercise
Modify the hardware-notification Jenkins job so that logs are deleted in case the checkId
value is disk. Create mock logs (feel free to use the touch command to create files) on the
server and run the job manually. Once the job build is finished, confirm that the logs were
indeed removed.

Figure 15-16: Settings screen of the Jenkins job hardware-notification

The problem we have right now is that the hard disk on the swarm-master node is mostly empty,
thus preventing us from testing the systemwe just set up.We’ll have to change the thresholds defined
in the disk.sh. Let’s modify the 80% warning threshold to 2%. Current HD usage is surely more than
that.

1 sudo sed -i "s/80/2/" /data/consul/scripts/disk.sh

Finally, let’s reload Consul and see what happens.

1 sudo killall -HUP consul

The first thing we should check is the watches log.

Self-Healing Systems 325

1 cat /data/consul/logs/watches.log

The relevant part of the output is as follows.

1 Consul watch request:

2 [{"Node":"swarm-master","CheckID":"disk","Name":"Disk utilization","Status":"war\

3 ning","Notes":"Critical 95% util, warning 80% util","Output":"Disk Usage: 3.3G/3\

4 9G (9%)\n","ServiceID":"","ServiceName":""}]

5 Triggering Jenkins job http://10.100.198.200:8080/job/hardware-notification/build

Please note that it might take a few seconds until Consul’s check is run. If you did not receive the
similar output from logs, repeat the cat command.

We can see the JSON that consul sent to the script and that the request to build the Jenkins job
hardware-notification has been dispatched. We can also take a look at the Jenkins Console Output
of this job by opening http://10.100.198.200:8080/job/hardware-notification/lastBuild/console²⁸⁶ URL
in a browser.

Figure 15-17: Console output of the Jenkins job hardware-notification

Since, at this moment, we have only one Consul check used for hard disk utilization, we should
implement at least one more. The suitable candidate is memory. Even if we do not do any corrective
action when some hardware check fails, having the information in Consul is already very useful in
itself.

Now that we understand the process, we can do better, and use Ansible to set up everything. Besides,
different checks should be set up not only in the swarm-master node but also in the rest of the cluster,
and we don’t want to do that manually unless it’s for learning purposes.

Before we proceed, let’s exit the swarm-master node.

²⁸⁶http://10.100.198.200:8080/job/hardware-notification/lastBuild/console

http://10.100.198.200:8080/job/hardware-notification/lastBuild/console
http://10.100.198.200:8080/job/hardware-notification/lastBuild/console

Self-Healing Systems 326

1 exit

Automatically Setting Up Consul Health Checks and Watches for
Monitoring Hardware

At this moment, we have one hardware watcher configured only in the swarm-master node. Now
that we are familiar with the way Consul watches work, we can use Ansible to deploy hardware
monitoring to all the nodes of the Swarm cluster.

We’ll run the Ansible playbook first, and then explore the roles that were used to setup the checks.

1 vagrant ssh cd

2

3 ansible-playbook /vagrant/ansible/swarm-healing.yml \

4 -i /vagrant/ansible/hosts/prod

The swarm-healing.yml²⁸⁷ playbook is as follows.

1 - hosts: swarm

2 remote_user: vagrant

3 serial: 1

4 sudo: yes

5 vars:

6 - debian_version: vivid

7 - docker_cfg_dest: /lib/systemd/system/docker.service

8 - is_systemd: true

9 roles:

10 - common

11 - docker

12 - consul-healing

13 - swarm

14 - registrator

The only difference, when compared with the swarm.yml playbook, is the usage of the consul-heal-
ing role. Those two roles (consul and consul-healing) are very similar. The major difference is that
the later copies fewmore files to destination servers (roles/consul-healing/files/consul_check.json²⁸⁸,
roles/consul-healing/files/disk.sh²⁸⁹, and roles/consul-healing/files/mem.sh²⁹⁰). We already created
all those files manually, except the mem.sh that is used to check memory, and follows the

²⁸⁷https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/swarm-healing.yml
²⁸⁸https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/files/consul_check.json
²⁸⁹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/files/disk.sh
²⁹⁰https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/files/mem.sh

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/swarm-healing.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/files/consul_check.json
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/files/disk.sh
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/files/mem.sh
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/swarm-healing.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/files/consul_check.json
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/files/disk.sh
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/files/mem.sh

Self-Healing Systems 327

similar logic as the disk.sh script. The roles/consul-healing/templates/manage_watches.sh²⁹¹ and
roles/consul-healing/templates/watches.json²⁹² files are defined as templates so that a few things can
be customized through Ansible variables. All in all, we are mostly replicating manual steps through
Ansible, so that provisioning and configuration of the whole cluster can be done automatically.

Please open the http://10.100.192.200:8500/ui/#/dc1/nodes²⁹³ URL, and click on any of the nodes.
You’ll notice that each has Disk utilization and Memory utilization watches that, in the case of a
failure, will start the build of the Jenkins job hardware-notification/²⁹⁴.

While watching hardware resources, and performing predefined actions in case a threshold is
reached, is interesting and useful, there is often a limitation to corrective actions that can be taken. If,
for example, a whole node is down, the only thing we can do, in most cases, is to send a notification
to someone whowill manually investigate the problem. The real benefits are obtained bymonitoring
services.

Setting Up Consul Health Checks and Watches for Monitoring
Services

Before we dive into service checks and watches, let’s initiate deployment of our books-ms container.
That way we’ll use our time wisely, and discuss the subject while Jenkins is working hard to have
the service up and running.

We’ll start by indexing the branches defined in the Jenkins job books-ms²⁹⁵. Please open it in a
browser, click the Branch Indexing link located in the left-hand menu, and follow it with Run Now.
Once the indexing is done, Jenkins will detect that the swarm branch matches the filter, create the
subproject, and run the first build. When finished, we’ll have the books-ms service deployed to the
cluster, and we’ll be able to experiment with more self-healing techniques. You can monitor the
build progress from the console screen²⁹⁶.

The first step in self-healing is identifying that something is wrong. On the system level, we can
observe services we’re deploying and, if one of them does not respond, perform some corrective
actions. We can continue using Consul checks in a similar manner as with did with memory and
disk verifications. The major difference is that this time we’ll be better of by using http instead script
checks. Consul will perform periodic requests to our services, and send failures to the watches we
already set up.

Before we proceed, we should discuss what should be checked. Should we check each service
container? Should we check auxiliary containers like databases? Should we care about containers
at all? Each of those checks can be useful depending on specific scenarios. In our case, we’ll use
a more general approach and monitor the service as a whole. Are we losing control if we are not

²⁹¹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/templates/manage_watches.sh
²⁹²https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/templates/watches.json
²⁹³http://10.100.192.200:8500/ui/#/dc1/nodes
²⁹⁴http://10.100.198.200:8080/job/hardware-notification/
²⁹⁵http://10.100.198.200:8080/job/books-ms/
²⁹⁶http://10.100.198.200:8080/job/books-ms/branch/master/lastBuild/console

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/templates/manage_watches.sh
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/templates/watches.json
http://10.100.192.200:8500/ui/#/dc1/nodes
http://10.100.198.200:8080/job/hardware-notification/
http://10.100.198.200:8080/job/books-ms/
http://10.100.198.200:8080/job/books-ms/branch/master/lastBuild/console
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/templates/manage_watches.sh
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/templates/watches.json
http://10.100.192.200:8500/ui/#/dc1/nodes
http://10.100.198.200:8080/job/hardware-notification/
http://10.100.198.200:8080/job/books-ms/
http://10.100.198.200:8080/job/books-ms/branch/master/lastBuild/console

Self-Healing Systems 328

monitoring each container separately? The answer to that question depends on the goals we’re trying
to accomplish. What do we care about? Do we care if all containers are running, or whether our
services are working and performing as expected? If we’d need to choose, I’d say that the later is
more important. If our service is scaled to five instances and it continues performing well even after
two of them stop working, there is probably nothing we should do. Only if service as a whole stops
working, or if it doesn’t perform as expected, some corrective actions should be taken.

Unlike hardware checks that benefit from uniformity, and should be located in one place, system
checks can vary from one service to another. In order to avoid dependencies between a team that
maintains a service and a team in charge of the overall CD processes, we’ll keep check definitions
inside the service code repository. That way, service team has full freedom to define checks they
think are appropriate for the service they’re developing. Since parts of the checks are variables,
we’ll define them through the Consul Template format. We’ll, also, employ naming convention and
always use the same name for the file. The consul_check.ctmpl²⁹⁷ describes checks for the books-ms
service, and is as follows.

1 {

2 "service": {

3 "name": "books-ms",

4 "tags": ["service"],

5 "port": 80,

6 "address": "{{key "proxy/ip"}}",

7 "checks": [{

8 "id": "api",

9 "name": "HTTP on port 80",

10 "http": "http://{{key "proxy/ip"}}/api/v1/books",

11 "interval": "10s",

12 "timeout": "1s"

13 }]

14 }

15 }

We defined not only checks but also the service named books-ms, the tag service, port it is running on
and the address. Please note that, since this is the definition of the service as a whole, the port is 80.
In our case, the service as a whole is accessible through the proxy, no matter how many containers
we deploy, nor ports they are running on. The address is obtained from Consul, through the proxy/ip
key. This service should behave the same, no matter which color is currently deployed.

Once the service is defined, we proceed with the checks (in this case only one). Each check has an ID
and a name, which are used for informational purposes only. The key entry is http that defines the
address Consul will use to ping this service. Finally, we specified that ping should be performed every
ten seconds and that the timeout should be one second. How do we use this template? To answer

²⁹⁷https://github.com/vfarcic/books-ms/blob/master/consul_check.ctmpl

https://github.com/vfarcic/books-ms/blob/master/consul_check.ctmpl
https://github.com/vfarcic/books-ms/blob/master/consul_check.ctmpl

Self-Healing Systems 329

that question, we should explore the Jenkinsfile²⁹⁸, located in the master branch of the books-ms
repository.

1 node("cd") {

2 def serviceName = "books-ms"

3 def prodIp = "10.100.192.200"

4 def proxyIp = "10.100.192.200"

5 def swarmNode = "swarm-master"

6 def proxyNode = "swarm-master"

7 def registryIpPort = "10.100.198.200:5000"

8 def swarmPlaybook = "swarm-healing.yml"

9 def proxyPlaybook = "swarm-proxy.yml"

10 def instances = 1

11

12 def flow = load "/data/scripts/workflow-util.groovy"

13

14 git url: "https://github.com/vfarcic/${serviceName}.git"

15 flow.provision(swarmPlaybook)

16 flow.provision(proxyPlaybook)

17 flow.buildTests(serviceName, registryIpPort)

18 flow.runTests(serviceName, "tests", "")

19 flow.buildService(serviceName, registryIpPort)

20

21 def currentColor = flow.getCurrentColor(serviceName, prodIp)

22 def nextColor = flow.getNextColor(currentColor)

23

24 flow.deploySwarm(serviceName, prodIp, nextColor, instances)

25 flow.runBGPreIntegrationTests(serviceName, prodIp, nextColor)

26 flow.updateBGProxy(serviceName, proxyNode, nextColor)

27 flow.runBGPostIntegrationTests(serviceName, prodIp, proxyIp, proxyNode, curr\

28 entColor, nextColor)

29 flow.updateChecks(serviceName, swarmNode)

30 }

The only significant difference, when compared with Jenkinsfiles we used in previous chapters, is
the last line that invokes the updateChecks function from the roles/jenkins/files/scripts/workflow-
util.groovy²⁹⁹ utility script. The function is as follows.

²⁹⁸https://github.com/vfarcic/books-ms/blob/master/Jenkinsfile
²⁹⁹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy

https://github.com/vfarcic/books-ms/blob/master/Jenkinsfile
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/books-ms/blob/master/Jenkinsfile
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy

Self-Healing Systems 330

1 def updateChecks(serviceName, swarmNode) {

2 stage "Update checks"

3 stash includes: 'consul_check.ctmpl', name: 'consul-check'

4 node(swarmNode) {

5 unstash 'consul-check'

6 sh "sudo consul-template -consul localhost:8500 \

7 -template 'consul_check.ctmpl:/data/consul/config/${serviceName}.jso\

8 n:killall -HUP consul' \

9 -once"

10 }

11 }

In a nutshell, the function copies the file consul_check.ctmpl to the swarm-master node, and runs
Consul Template. The result is the creation of, yet another, Consul configuration file that will
perform service checks.

With the checks defined, we should take a closer look at the roles/consul-healing/templates/man-
age_watches.sh³⁰⁰ script. The relevant part is as follows.

1 if [["$CHECK_ID" == "mem" || "$CHECK_ID" == "disk"]]; then

2 echo -e "${RED}Triggering Jenkins job http://{{ jenkins_ip }}:8080/job/h\

3 ardware-notification/build${NC}"

4 curl -X POST http://{{ jenkins_ip }}:8080/job/hardware-notification/buil\

5 d \

6 --data-urlencode json="{\"parameter\": [{\"name\":\"checkId\", \"val\

7 ue\":\"$CHECK_ID\"}, {\"name\":\"status\", \"value\":\"$STATUS\"}]}"

8 else

9 echo -e "${RED}Triggering Jenkins job http://{{ jenkins_ip }}:8080/job/s\

10 ervice-redeploy/buildWithParameters?serviceName=${SERVICE_ID}${NC}"

11 curl -X POST http://{{ jenkins_ip }}:8080/job/service-redeploy/buildWith\

12 Parameters?serviceName=${SERVICE_ID}

13 fi

Since we aim at performing two types of checks (hardware and services), we had to introduce an
if/else statement. When hardware failure is discovered (mem or disk), build request is sent to the
Jenkins job hardware-notification. This part is the same as the definition we created earlier. On the
other hand, we’re assuming that any other type of checks is related to services, and a request is
sent to the service-redeploy job. In our case, when books-ms service fails, Consul will send a request
to build the service-redeploy job, and pass books-ms as the serviceName parameter. We’re creating
this job in Jenkins in the same way as we created others. The main difference is the usage of the
roles/jenkins/templates/service-redeploy.groovy³⁰¹ script. The content is as follows.

³⁰⁰https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/templates/manage_watches.sh
³⁰¹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-redeploy.groovy

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/templates/manage_watches.sh
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/templates/manage_watches.sh
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-redeploy.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/consul-healing/templates/manage_watches.sh
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/templates/service-redeploy.groovy

Self-Healing Systems 331

1 node("cd") {

2 def prodIp = "10.100.192.200"

3 def swarmIp = "10.100.192.200"

4 def proxyNode = "swarm-master"

5 def swarmPlaybook = "swarm-healing.yml"

6 def proxyPlaybook = "swarm-proxy.yml"

7

8 def flow = load "/data/scripts/workflow-util.groovy"

9 def currentColor = flow.getCurrentColor(serviceName, prodIp)

10 def instances = flow.getInstances(serviceName, swarmIp)

11

12 deleteDir()

13 git url: "https://github.com/vfarcic/${serviceName}.git"

14 try {

15 flow.provision(swarmPlaybook)

16 flow.provision(proxyPlaybook)

17 } catch (e) {}

18

19 flow.deploySwarm(serviceName, prodIp, currentColor, instances)

20 flow.updateBGProxy(serviceName, proxyNode, currentColor)

21 }

You probably noticed that the script is much shorter than the Jenkinsfile³⁰² we used before. We
could easily use the same script to redeploy as the one we’re using for deployment, and the end
result would be (almost) the same. However, the objectives differ. One of the crucial requirements
is speed. If our service failed, we want to redeploy is as fast as possible, while having into account
as many different scenarios as possible. One of the important differences is that we are not running
tests during redeployment. All tests already passed during deployment, or the service would not be
running in the first place and there would be nothing to fail. Besides, the same set of tests running
against the same release will always produce the same result, or our tests are flaky and unreliable,
indicating grave mistakes in the testing process. You’ll also notice that building and pushing to the
registry is missing. We do not want to build and deploy a new release, that’s what deployment
is for. We want to get the latest release back to production as soon as possible. Our need is to
restore the system to the same state as it was before the service failed. Now that we covered what
is, intentionally, missing from the redeployment script, let’s go through it.

The first change is in the way how we obtain the number of instances that should be running. Up
until now, Jenkinsfile, residing in the service repository, was deciding howmany instances to deploy.
We had the statement def instances = 1 in the Jenkinsfile. However, since this redeployment job
should be used for all services, we had to create a new function called getInstances that will retrieve
the number stored in Consul. It represents the desired number of instances, and corresponds with the
value specified in the Jenkinsfile. Without it, we would risk deploying a fixed number of containers

³⁰²https://github.com/vfarcic/books-ms/blob/swarm/Jenkinsfile

https://github.com/vfarcic/books-ms/blob/swarm/Jenkinsfile
https://github.com/vfarcic/books-ms/blob/swarm/Jenkinsfile

Self-Healing Systems 332

and, potentially, destroying someone else’s intention.Maybe developers decided to run two instances
of the service, or maybe they scaled it to five after realizing that the load is too big. For that reason,
we have to discover how many instances to deploy, and put that information to good use. The
getInstances function defined in the roles/jenkins/files/scripts/workflow-util.groovy³⁰³ script is as
follows.

1 def getInstances(serviceName, swarmIp) {

2 return sendHttpRequest("http://${swarmIp}:8500/v1/kv/${serviceName}/instance\

3 s?raw")

4 }

The function sends a simple request to Consul and returns the number of instances of the specified
service.

Next, we are deleting the job workspace directory before cloning the code from GitHub. This
removal of the files is necessary since the Git repository is different from one service to another,
and Git repository cannot be cloned on top of the other. We don’t need all the code, but rather few
configuration files, specifically, those for Docker Compose and Consul. Never the less, it’s easier if
we clone everything. If the repository is big, you might consider getting only the files you need.

1 deleteDir()

2 git url: "https://github.com/vfarcic/${serviceName}.git"

Now that all the files we’ll need (and many more that we won’t) are in the workspace, we can
initiate the redeployment. Before we proceed, let’s discuss what might have caused the failure in
the first place. We can identify three main culprits. One of the nodes stopped working, one of the
infrastructure services is down (Swarm, Consul, and so on), or our own service failed. We’ll skip the
first possibility and leave it for later. If one of the infrastructure services stopped working, we could
fix that by running Ansible playbooks. On the other hand, if the cluster is operating as expected, all
we have to do is redeploy the container with our service.

Let’s explore provisioning with Ansible. The part of the script that runs Ansible playbooks is as
follows.

1 try {

2 flow.provision(swarmPlaybook)

3 flow.provision(proxyPlaybook)

4 } catch (e) {}

The major difference, when compared with the previous Jenkins Workflow scripts, is that, this time,
provisioning is inside the try/catch block. The reason is a possible node failure. If the culprit for this

³⁰³https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy

Self-Healing Systems 333

redeployment is one malfunctioning node, provisioning will fail. That’s not a problem in itself if the
rest of the script is run. For that reason, we have this script block under try/catch, thus ensuring that
the script continues running no matter the provisioning result. After all, if a node is not working,
Swarm will redeploy the service somewhere else (explained in more detail later on). Let’s move onto
the next use case.

1 flow.deploySwarm(serviceName, prodIp, currentColor, instances)

2 flow.updateBGProxy(serviceName, proxyNode, currentColor)

Those two lines are the same as in the deployment script in the Jenkinsfile. The only, subtle,
difference is that the number of instances is not hardcoded, but, as we saw earlier, discovered.

That’s it for now. With the script we explored, we have two out of three scenarios covered. Our
system will recover if one of infrastructure or one of our services fails. Let’s try it out.

We’ll stop one of the infrastructure services and see whether the system will get restored to
the original state. There is probably no better candidate than nginx. It is part of our services
infrastructure and, without it, none of our services work.

Without nginx, our service is not accessible through the port 80. At no point, Consul will know that
nginx failed. Instead, Consul checker will detect that the books-ms service is not operational, and
initiate a new build of the Jenkins job service-redeploy. As a result, provisioning and redeployment
will be executed. Part of Ansible provisioning is in charge of ensuring that, among others, nginx is
running.

Let’s enter the swarm-master node and stop the nginx container.

1 exit

2

3 vagrant ssh swarm-master

4

5 docker stop nginx

6

7 exit

8

9 vagrant ssh cd

With nginx process dead, the books-ms service is not accessible (at least not through the port 80).
We can confirm that by sending an HTTP request to it. Please bear in mind that Consul will initiate
redeployment through Jenkins, so hurry up before it becomes operational again.

1 curl swarm-master/api/v1/books

As expected, curl returned the Connection refused error.

Self-Healing Systems 334

1 curl: (7) Failed to connect to swarm-master port 80: Connection refused

We can also take a look at the Consul UI. The Service books-ms check³⁰⁴ should be in the critical
state. You can click on the swarm-master link to get more details about all the service running on
that node and their statuses. As a side note, books-ms is registered as running on the swarm-master
server because that’s where the proxy is. There is also books-ms-blue or books-ms-green service that
contains data specific to deployed containers.

Figure 15-18: Consul status screen with one check in the critical status

Finally, We can take a look at the service-redeploy console screen³⁰⁵. The redeployment process
should be on the way, or, more likely, finished by now.

Once the build of the service-redeploy job is finished, everything should be restored to the original
status, and we can use our service.

1 curl -I swarm-master/api/v1/books

The output of the response is as follows.

³⁰⁴http://10.100.192.200:8500/ui/#/dc1/services/books-ms
³⁰⁵http://10.100.198.200:8080/job/service-redeploy/lastBuild/console

http://10.100.192.200:8500/ui/#/dc1/services/books-ms
http://10.100.198.200:8080/job/service-redeploy/lastBuild/console
http://10.100.192.200:8500/ui/#/dc1/services/books-ms
http://10.100.198.200:8080/job/service-redeploy/lastBuild/console

Self-Healing Systems 335

1 HTTP/1.1 200 OK

2 Server: nginx/1.9.9

3 Date: Tue, 19 Jan 2016 21:53:00 GMT

4 Content-Type: application/json; charset=UTF-8

5 Content-Length: 2

6 Connection: keep-alive

7 Access-Control-Allow-Origin: *

The proxy service has been, indeed, redeployed, and everything is working as expected.

What would happen if, instead stopping one of the infrastructure services, we remove the book-ms
instance entirely? Let’s remove the service container, and see what happens.

1 export DOCKER_HOST=tcp://swarm-master:2375

2

3 docker rm -f $(docker ps --filter name=booksms --format "{{.ID}}")

Go ahead and open the service-redeploy Jenkins console screen³⁰⁶. It might take a couple of seconds
until Consul initiates a new build. Once started, all we need to do is wait a bit longer, until the build
finishes running. Once you see the Finished: Success message, we can double check whether the
service is indeed operational.

³⁰⁶http://10.100.198.200:8080/job/service-redeploy/lastBuild/console

http://10.100.198.200:8080/job/service-redeploy/lastBuild/console
http://10.100.198.200:8080/job/service-redeploy/lastBuild/console

Self-Healing Systems 336

Figure 15-19: Output of the service-redeploy build

1 docker ps --filter name=books --format "table {{.Names}}"

2

3 curl -I swarm-master/api/v1/books

The combined output of both commands is as follows.

1 NAMES

2 swarm-node-2/booksms_app-blue_1

3 swarm-node-1/books-ms-db

4

5 ...

6

7 HTTP/1.1 200 OK

8 Server: nginx/1.9.9

9 Date: Tue, 19 Jan 2016 22:05:50 GMT

Self-Healing Systems 337

10 Content-Type: application/json; charset=UTF-8

11 Content-Length: 2

12 Connection: keep-alive

13 Access-Control-Allow-Origin: *

Our service is, indeed, running and accessible through the proxy. The system healed itself. We can
stop almost any process, on any of the Swarm nodes, and, with a few seconds delay, system will
restore itself to the previous state. The only thing we haven’t tried is to stop the whole node. Such an
action would require a few more changes to our scripts. We’ll explore those changes later on. Please
be aware that this is a demo setting and it does not mean that the system, as it is now, is ready
for production. On the other hand, it’s not far either. With a bit of tweaking, you could consider
applying this to you system. You might want to add some notifications (email, Slack, and so on) and
adapt the process to your needs. The important part is the process. Once we understand what we
want, and how to get there, the rest is usually only a question of time.

The process we have, at this moment, is as follows.

• Consul performs periodic HTTP requests, runs custom scripts or waits for time-to-live (TTL)
messages from services.

• In case Consul’s request does not return status code 200, the script returns a non-zero exit
code, or TTL message was not received, Consul sends a request to Jenkins.

• Upon receiving a request from Consul, Jenkins initiates redeployment process, sends notifica-
tion messages, and so on.

Self-Healing Systems 338

Figure 15-20: Checking and healing Consul pinging services

We explored a few examples of reactive healing. Those were, by no means, exhaustive enough to
provide you with everything you need to set up your own system, but, hopefully, provided you with
a path that you should explore in more depth, and adapt to your own needs. Right now, we’ll move
our attention to preventive measure we can take. We’ll examine scheduled scaling and descaling. It
is a good candidate as an introduction to preventive healing since it is probably the easiest one to
implement.

Preventive Healing Through Scheduled Scaling and Descaling

Preventive healing is a huge topic in itself and, in all but the simplest scenarios, requires historical
data that can be used to analyze the system and predict the future. Since, at this moment, we neither
have the data, nor the tools to generate them, we’ll start with a very simple example that does not
require any of those.

The scenario we’ll explore is as follows. We are working on an online book store. Marketing
department decided that, starting from the new years eve, all readers will be able to purchase books
with a discount. The campaign will last for a day, and we expect it to generate a huge interest.
In technical terms, that means that during 24 hours, starting from midnight, January the first, our
system will be under heavy load. What should we do? We already have processes and tools that

Self-Healing Systems 339

allow us to scale our system (or parts that will be most affected). What we need to do is scale
selected services before the campaign starts and, once it’s finished, restore it to the original state.
The problem is that no one wants to celebrate new years eve in the office. We can fix that easily
with Jenkins. We can create a scheduled job that will scale, and, later on, descale our services. With
this problem solved, another one emerges. To howmany instances should we scale? We can define a
number in advance but, in that way, we risk making amistake. For example, wemight decide to scale
to three instances (at this moment we have only one). Between today and the start of the campaign,
due to some other reason, the number of instances might increase to five. In such a scenario, not
only that we would not increase the capacity of our system, but would accomplish quite contrary.
Our scheduled job would descale the service from five to three. The solution might be to use relative
values. Instead of specifying that the system should be scaled to three instances, we should set it up
in a way that the number of instances should be increased by two. If there is one instance running,
such a process would launch two more and increase the overall number to three. On the other hand,
if someone already scaled the service to five, the end result would be seven containers running
inside our cluster. The similar logic can be employed after the campaign is finished. We can create
the second scheduled job that would decrease the number of running instances by two. From three,
to one. From five, to three. It does not matter how many will be running at that moment since we
would decrease that number by two.

This process of preventive healing is similar to the usage of vaccinations. Their primary use is not
to heal an existing infection, but to develop immunity that will prevent them from spreading in the
first place. In the same way, we’ll schedule scaling (and later on descaling), in order to prevent the
increased load affecting our system in unexpected ways. Instead of healing an infected system, we’ll
prevent it from getting into bad shape.

Let’s see such the process in action.

Please open the Jenkins books-ms-scale configuration³⁰⁷ screen. The job configuration is very
straightforward. It has one parameter called scale with the default value of 2. It can be adjusted
when starting a build. Build Triggers is set to build periodically with the value “45 23 31 12 ”. If
you already used *cron scheduling, this should look familiar. The format is MINUTE HOUR DOM
MONTH DOW. The first number represents minutes, the second hours, the third is the day of a
month, followed by month and the day of the week. Asterisk, can be translated to any. So, the
value we are using is fourty fifth minute of the twenty third hour, on thirty first day of the twelfth
month. In other words, fifteen minutes before new years eve. That is more than enough time for
us to increase the number of instances before the campaign starts. For more information about the
scheduling format, please click the icon with a question mark located right of the Schedule field.

The third, at last, part of the job configuration is the following Workflow script.

³⁰⁷http://10.100.198.200:8080/job/books-ms-scale/configure

http://10.100.198.200:8080/job/books-ms-scale/configure
http://10.100.198.200:8080/job/books-ms-scale/configure

Self-Healing Systems 340

1 node("cd") {

2 def serviceName = "books-ms"

3 def swarmIp = "10.100.192.200"

4

5 def flow = load "/data/scripts/workflow-util.groovy"

6 def instances = flow.getInstances(serviceName, swarmIp).toInteger() + scale.\

7 toInteger()

8 flow.putInstances(serviceName, swarmIp, instances)

9 build job: "service-redeploy", parameters: [[$class: "StringParameterValue",\

10 name: "serviceName", value: serviceName]]

11 }

Since there is no real reason to duplicate the code, we are using the helper functions from the
roles/jenkins/files/scripts/workflow-util.groovy³⁰⁸ script.

We start by defining the number of instances we want to run. We do that by adding the value of the
scale parameter (defaults to two) to the number of instances our service is currently using. We get
the later by invoking the getInstances function we already utilized in a couple of cases throughout
the book. That new value is put to Consul through the putInstances function. Finally, we run a
build of the service-redeploy job which does the redeployment that we need. To summarize, since
the service-redeploy job reads the number of instances from Consul, all we had to do in this script,
before invoking the service-redeploy build, was to change the scale value in Consul. From there
on, service-redeploy job will do what’s needed to scale the number of containers. By invoking the
service-redeploy job, we avoided replicating the code that is already used elsewhere.

³⁰⁸https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/jenkins/files/scripts/workflow-util.groovy

Self-Healing Systems 341

Figure 15-21: Configuration of the books-ms-scale job representing scheduled scaling

Now we have two paths we can take. One is to wait until new years eve and confirm that the job
works. I will take liberty and assume that you do not have so much patience, and proceed with
the alternative. We’ll run the job manually. Before we do that, let’s take a quick look at the current
situation inside our Swarm cluster.

Self-Healing Systems 342

1 export DOCKER_HOST=tcp://swarm-master:2375

2

3 docker ps --filter name=books --format "table {{.Names}}"

4

5 curl swarm-master:8500/v1/kv/books-ms/instances?raw

The combined output of the commands is as follows.

1 NAMES

2 swarm-node-1/booksms_app-blue_1

3 swarm-node-2/books-ms-db

4 ...

5 1

We can see that only one instance of the books-ms service is running (booksms_app-blue_1) and
that Consul has the value of 1 stored as the books-ms/instances key.

Let’s run the books-ms-scale Jenkins job. If everything works as expected, it should increase the
number of books-ms instances by two, resulting in three in total. Please open the books-ms-scale
build screen³⁰⁹ and click the Build button. You can monitor the progress by opening the books-ms-
scale console screen³¹⁰. You’ll see that, after storing the new number of instances in Consul, it will
invoke a build of the service-redeploy³¹¹ job. After a few seconds, the build will finish, and we’ll be
able to verify the result.

1 docker ps --filter name=books --format "table {{.Names}}"

2

3 curl swarm-master:8500/v1/kv/books-ms/instances?raw

The combined output of the commands is as follows.

1 NAMES

2 swarm-node-2/booksms_app-blue_3

3 swarm-node-1/booksms_app-blue_2

4 swarm-node-1/booksms_app-blue_1

5 swarm-node-2/books-ms-db

6 ...

7 3

³⁰⁹http://10.100.198.200:8080/job/books-ms-scale/build?delay=0sec
³¹⁰http://10.100.198.200:8080/job/books-ms-scale/lastBuild/console
³¹¹http://10.100.198.200:8080/job/service-redeploy/lastBuild/console

http://10.100.198.200:8080/job/books-ms-scale/build?delay=0sec
http://10.100.198.200:8080/job/books-ms-scale/build?delay=0sec
http://10.100.198.200:8080/job/books-ms-scale/lastBuild/console
http://10.100.198.200:8080/job/books-ms-scale/lastBuild/console
http://10.100.198.200:8080/job/service-redeploy/lastBuild/console
http://10.100.198.200:8080/job/books-ms-scale/build?delay=0sec
http://10.100.198.200:8080/job/books-ms-scale/lastBuild/console
http://10.100.198.200:8080/job/service-redeploy/lastBuild/console

Self-Healing Systems 343

As we can see, this time, three instances of the service are running. We can observe the same result
from the Consul UI, by navigating to the key/value books-ms/instances screen³¹².

Figure 15-22: Consul UI Key/Value books-ms/instances screen

Our system is now ready to take the increased load during those 24 hours. As you saw, we were
very generous by scheduling it to run 15 minutes before the due date. The execution of the build
lasted only a couple of seconds. We could speed it even more by skipping the provisioning part of
the service-redeploy job. I’ll leave that to you as an exercise.

Add conditional to the service-redeploy job
Modify the service-redeploy Jenkins job so that provisioning is optional. You’ll have to add
a new parameter that accepts boolean value and add an if/else statement to the workflow
script. Make sure that the parameter has the default value set to true so that provisioning
is always performed unless specified otherwise. Once finished, switch to the configuration
of the books-ms-scale job and modify it so that the call to the service-redeploy job passes
the signal to skip provisioning.

What happens after 24 hours passes, and the campaign is over? The Jenkins job books-ms-descale³¹³
will be run. It is the same as the books-ms-scale job with two notable differences. The scale parameter
is set to -2 and it is scheduled to run on the second of January, fifteen minutes after midnight (15 0
2 1 *). We gave our system fifteen minutes of cool-down time. The Workflow script is the same.

Let’s run it by opening the books-ms-descale build screen³¹⁴, and clicking the Build button. It will
reduce the number of instances by two, and run a build of the service-redeploy job. Once finished,
we can have another look at our cluster.

³¹²http://10.100.192.200:8500/ui/#/dc1/kv/books-ms/instances/edit
³¹³http://10.100.198.200:8080/job/books-ms-descale/configure
³¹⁴http://10.100.198.200:8080/job/books-ms-descale/build?delay=0sec

http://10.100.192.200:8500/ui/#/dc1/kv/books-ms/instances/edit
http://10.100.198.200:8080/job/books-ms-descale/configure
http://10.100.198.200:8080/job/books-ms-descale/build?delay=0sec
http://10.100.192.200:8500/ui/#/dc1/kv/books-ms/instances/edit
http://10.100.198.200:8080/job/books-ms-descale/configure
http://10.100.198.200:8080/job/books-ms-descale/build?delay=0sec

Self-Healing Systems 344

1 docker ps --filter name=books --format "table {{.Names}}"

2

3 curl swarm-master:8500/v1/kv/books-ms/instances?raw

The combined output of the commands is as follows.

1 NAMES

2 swarm-node-1/booksms_app-blue_1

3 swarm-node-2/books-ms-db

4 ...

5 1

We are back where we started. The campaign is finished, and the service is reduced from three
instances to one. The value in Consul is restored as well. The system survived horde of visitors
desperately trying to benefit from our new years eve discount, business is happy that we were able
to serve them all, and life continues as it was.

We could have created different formulas to accomplish our goals. It could be as simple as
multiplying the number of existing instances. That would give us a bit more realistic scenario.
Instead of adding two new containers, we could have multiplied them by two. If three were running
before, six would be running afterwards. As you can imagine, those formulas can often be much
more complicated. More importantly, they would require much more consideration. If, instead of
running one, we were running fifty different services, we would not apply the same formula to all
of them. Some would need to be scaled a lot, some not so much, while other not at all. The best
way to proceed would be to employ some kind of stress tests that would tell us which pieces of the
system require scaling, and how much that scaling should be. There’s plethora of tools that can run
those tests, with JMeter³¹⁵ and Gatling³¹⁶ (my favorite) being only a few.

I mentioned, at the beginning of this chapter, that preventive healing is based on historical data. This
was a very poor, yet very efficient and simple way of demonstrating that. In this case, historical data
was in our heads. We knew that a marketing campaign will increase the load on our service, and
acted in a way that potential problems are avoided. The real, and much more complicated, way to
create preventive healing require more than our memory. It requires a system capable of storing and
analyzing data. We’ll discuss requirements for such a system in the next chapter.

Â Reactive Healing with Docker Restart Policies

Those more familiar with Docker might be asking why I did not mention Docker restart policies. On
a first look, they seem to be a very effective way to recuperate failed containers. They are, indeed,
the easiest way to define when to restart containers. We can use the --restart flag on docker

run (or the equivalent Docker Compose definition), and the container will be restarted on exit. The
following table summarizes the currently supported restart policies.

³¹⁵http://jmeter.apache.org/
³¹⁶http://gatling.io/

http://jmeter.apache.org/
http://gatling.io/
http://jmeter.apache.org/
http://gatling.io/

Self-Healing Systems 345

Policy Result

no Do not automatically restart the container when it exits.
This is the default.

on-failure[:max-retries] Restart only if the container exits with a non-zero exit
status. Optionally, limit the number of restart retries the
Docker daemon attempts.

always Always restart the container regardless of the exit status.
When you specify always, the Docker daemon will try to
restart the container indefinitely. The container will also
always start on daemon startup, regardless of the current
state of the container.

unless-stopped Always restart the container regardless of the exit status,
but do not start it on daemon startup if the container has
been put to a stopped state before.

An example of the usage of restart policy is as follows (please do not run it).

1 docker run --restart=on-failure:3 mongo

In that case, mongo would be restarted up to three times. The restart would occur only if the process
running inside the mongo container exits with a non-zero status. If we stop that container, the restart
policy would not be applied.

The problem with restart policies is that there are too many corner cases not contemplated. The
process running inside a container might fail due problems not directly related to the container that
failed. For example, a service inside the container might be trying to connect to a database through
a proxy. It might have been designed to stop if the connection could not be established. If, for some
reason, the node with the proxy is not operational, it doesn’t matter how many times we restart
the container, the result will always be the same. There is nothing wrong in trying, but, sooner
or later, someone needs to be notified about the problem. Maybe provisioning scripts need to be
run to restore the system to the desired state. Maybe more nodes need to be added to the cluster.
Maybe even the whole data center is not operational. No matter the cause, there are many more
possible paths that could be taken than what restart policy permits. For those reasons, we do need a
more robust system to deal with all those circumstances, and we are already on the way of creating
it. The flow we have established is much more robust than simple restart policies, and it already
covers the same problems as those that can be solved with the Docker restart policy. Actually, as it is
now, we have many more paths covered. We perform containers orchestration with Docker Swarm
that will make sure that our services are deployed to the most suited nodes inside the cluster. We
use Ansible that is continuously (with each deploy) provisioning the cluster, thus ensuring that the
whole infrastructure is in the correct state. We are using Consul in combination with Registrator
and Consul Template for service discovery, making sure that the registry of all our services is always
up to date. Finally, Consul health checks are continuously monitoring the state of our cluster and,
in case of a failure, sends requests to Jenkins that will initiate appropriate corrective actions.

We are utilizing the Docker’s slogan batteries included but removable to our benefit by extending
the system to suit our needs.

Self-Healing Systems 346

Combining On-Premise with Cloud Nodes

I won’t start a discussion whether to use on-premise servers or cloud hosting. Both have their
advantages and disadvantages. The decision what to use depends on individual needs. Besides, such
an attempt would be better suited inside the clustering and scaling chapter. However, there is a
clear use case in favour of cloud hosting that would suit very well the needs of, at least, one of the
scenarios from this chapter.

Cloud hosting shines when we need a temporary increase in the cluster capacity. A good example
would be our fictional scenario with the new years eve campaign. We needed to boost our capacity
for a day. If you are already hosting all your servers in the cloud, this scenario would require a few
more nodes to be created and, later on, destroyed, once the load is reduced to its former size. On the
other hand, if you use on-premise hosting, that would be an opportunity to contract cloud hosting
only for those additional nodes. Buying a new set of servers that will be used only during a short
period is very costly, especially if we take into account that the cost cosists not only of hardware
price, but also maintenance. If, in such cases, we use cloud nodes, the invoice would be paid only
for the time we use them (assuming that we destroy them afterwards). Since we have all the scripts
for provisioning and deploying services, the setup of those nodes would be almost effortless.

Personally, I prefer the combination of on-premise and cloud hosting. My on-premise servers are
fulfilling the need for the minimum capacity, while cloud hosting nodes are being created (and
destroyed) whenever that capacity needs to be temporarily increased. Please note that such a
combination is only my personal preference, and might not apply to your use cases.

The important part is that everything you learned from this book is equally applicable to both
situations (on-premise or cloud). The only significant difference is that you should not be using
Vagrant on production servers. We are using it only to create quickly virtual machines on you laptop.
If you are looking for a way to create production VMs in a similar way as with Vagrant, I suggest
you explore another HashiCorp product called Packer³¹⁷.

Self-Healing Summary (So Far)

What we built so far is, in some cases, close to what Kubernetes and Mesos offer out of the box,
while in others exceeds their functionality. The real advantage of the system we are working on is
its the ability to fine-tune it to your needs. That is not to say that Kubernetes and Mesos should not
be used. You should, at least, be familiar with them. Do not take anyone’s word for granted (not
even mine). Try them out and make your own conclusions. There are as many use cases as there
are projects, and each is different from the other. While in some cases the system we built would
provides a good base to build upon, there are others where, for example, Kubernetes or Mesos might
be more appropriate. I could not fit all the possible combinations in detail inside a single book. That
would increase it to an unmanageable size. Instead, I choose to explore ways we can build systems
that are highly extensible. Almost any piece we used by now can be extended, or replaced with

³¹⁷https://www.packer.io/

https://www.packer.io/
https://www.packer.io/

Self-Healing Systems 347

another. I feel that this approach gives you more possibilities to adapt examples to your own needs
and, at the same time, learn not only how something works, but why we chose it.

We went far from the humble beginnings of this book, and we are not yet done. The exploration of
self-healing systems will continue. However, first we need turn our attention to different ways of
collecting data generated inside our cluster.

As the first part of the self-healing subject is closing to an end, let us destroy our VMs, and start the
new chapter fresh.

You know what follows next. We’ll destroy everything we did, and begin the next chapter fresh.

1 exit

2

3 vagrant halt

Centralized Logging and Monitoring
I have so much chaos in my life, it’s become normal. You become used to it. You have just to relax,
calm down, take a deep breath and try to see how you can make things work rather than complain

about how they’re wrong.

– Tom Welling

Our exploration of DevOps practices and tools led us towards clustering and scaling. As a result,
we developed a system that allows us to deploy services to a cluster, in an easy and efficient way.
The result is an ever increasing number of containers running on a cluster consisting of, potentially,
many servers. Monitoring one server is easy. Monitoring many services on a single server poses
some difficulties. Monitoring many services on many servers requires a whole new way of thinking
and a new set of tools. As you start embracing microservices, containers, and clusters, the number
of deployed containers will begin increasing rapidly. The same holds true for servers that form the
cluster. We cannot, anymore, log into a node and look at logs. There are too many logs to look at.
On top of that, they are distributed among many servers. While yesterday we had two instances
of a service deployed on a single server, tomorrow we might have eight instances deployed to six
servers. The same holds true for monitoring. Old tools, like Nagios, are not designed to handle
constant changes in running servers and services. We already used Consul that provides a different,
not to say new, approach to managing near real-time monitoring and reaction when thresholds are
reached. However, that is not enough. Real-time information is valuable to detect that something is
wrong, but it does not give us information why the failure happened. We can know that a service is
not responding, but we cannot know why.

We need historical information about our system. That information can be in the form of logs,
hardware utilization, health checking, and many other things. The need to store historical data is
not new and has been in use for a long time. However, the direction that information travels changed
over time. While, in the past, most solutions were based on a centralized data collectors, today, due
to very dynamic nature of services and servers, we tend to have data collectors decentralized.

What we need for cluster logging and monitoring is a combination of decentralized data collectors
that are sending information to a centralized parsing service and data storage. There are plenty of
products specially designed to fulfill this requirement, ranging from on-premise to cloud solutions,
and everything in between. FluentD³¹⁸, Loggly³¹⁹, GrayLog³²⁰, Splunk³²¹, and DataDog³²² are only
a few of the solutions we can employ. I chose to show you the concepts through the ELK stack

³¹⁸http://www.fluentd.org/
³¹⁹https://www.loggly.com/
³²⁰https://www.graylog.org/
³²¹http://www.splunk.com/
³²²https://www.datadoghq.com/

348

http://www.fluentd.org/
https://www.loggly.com/
https://www.graylog.org/
http://www.splunk.com/
https://www.datadoghq.com/
http://www.fluentd.org/
https://www.loggly.com/
https://www.graylog.org/
http://www.splunk.com/
https://www.datadoghq.com/

Centralized Logging and Monitoring 349

(ElasticSearch³²³, LogStash³²⁴, and Kibana³²⁵). The stack has the advantage of being free, well
documented, efficient, andwidely used. ElasticSearch³²⁶ established itself as one of the best databases
for real-time search and analytics. It is distributed, scalable, highly available, and provides a
sophisticated API. LogStash³²⁷ allows us to centralize data processing. It can be easily extended
to custom data formats and offers a lot of plugins that can suit almost any need. Finally, Kibana³²⁸
is an analytics and visualization platform with intuitive interface sitting on top of ElasticSearch.
The fact that we’ll use the ELK stack does not mean that it is better than the other solutions. It all
depends on specific use cases and particular needs. I’ll walk you through the principles of centralized
logging and monitoring using the ELK stack. Once those principles are understood, you should have
no problem applying them to a different stack if you choose to do so.

We switched the order of things and chose the tools before discussing the need for centralized
logging. Let’s remedy that.

The Need for Centralized Logging

In most cases, log messages are written to files. That is not to say that files are the only, nor the
most efficient way of storing logs. However, since most teams are using file-based logs in one form
or another, for the time being, I’ll assume that is your case as well.

If we are lucky, there is one log file per a service or application. However, more often than not,
there are multiple files into which our services are outputting information. Most of the time, we do
not care much what is written in logs. When things are working well, there is not much need to
spend valuable time browsing through logs. A log is not a novel we read to pass the time, nor it is
a technical book we spend time with as a way to improve our knowledge. Logs are there to provide
valuable info when something, somewhere, went wrong.

The situation seems to be simple. We write information to logs that we ignore most of the time,
and when something goes wrong, we consult them and find the cause of the problem in no time.
At least, that’s what many are hoping for. The reality is far more complicated than that. In all but
most trivial systems, the debugging process is much more complex. Applications and services are,
almost always, interconnected, and it is often not easy to know which one caused the problem.
While it might manifest in one application, investigation often shows that the cause is in another.
For example, a service might have failed to instantiate. After some time spent browsing its logs, we
might discover that the cause is in the database. The service could not connect to it and failed to
launch. We got the symptom, but not the cause. We need to switch to the database log to find it out.
With this simple example, we already got to the point where looking at one log is not enough.

³²³https://www.elastic.co/products/elasticsearch
³²⁴https://www.elastic.co/products/logstash
³²⁵https://www.elastic.co/products/kibana
³²⁶https://www.elastic.co/products/elasticsearch
³²⁷https://www.elastic.co/products/logstash
³²⁸https://www.elastic.co/products/kibana

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana

Centralized Logging and Monitoring 350

With distributed services running on a cluster, the situation complicates exponentially. Which
instance of the service is failing? Which server is it running on? What are the upstream services
that initiated the request? What is the memory and hard disk usage in the node where the culprit
resides? As you might have guessed, finding, gathering, and filtering the information needed for the
successful discovery of the cause is often very complicated. The bigger the system, the harder it gets.
Even with monolithic applications, things can easily get out of hand. If (micro)services approach
is adopted, those problems are multiplied. Centralized logging is a must for all but simplest and
smallest systems. Instead, many of us, when things go wrong, start running from one server to
another, jumping from one file to the other. Like a chicken with its head cut off - running around
with no direction. We tend to accept the chaos logging creates, and consider it part of our profession.

What do we look for in centralized logging? As it happens, many things, but the most important are
as follows.

• A way to parse data and send them to a central database in near real-time.
• The capacity of the database to handle near real-time data querying and analytics.
• A visual representation of the data through filtered tables, dashboards, and so on.

We already choose the tools that will be able to fulfill all those requirements (and more). The ELK
stack (LogStash, ElasticSearch, and Kibana) can do all that. As in the case of all other tools we
explored, this stack can easily be extended to satisfy the particular needs we’ll set in front of us.

Now that we have a vague idea what we want to accomplish, and have the tools to do that, let us
explore a few of the logging strategies we can use. We’ll start with the most commonly used scenario
and, slowly, move towards more complicated and more efficient ways to define our logging strategy.

Without further ado, let’s create the environments we’ll use to experiment with centralized logging
and, later on, monitoring. We’ll create three nodes. You should already be familiar with the cd and
prod VMs. The first onewill be usedmainly for provisioningwhile the secondwill act as a production
server. We’ll introduce a new one called logging. It will be an imitation of a production server aimed
at running all the logging and monitoring tools. Ideally, instead of a single production server (prod),
we would run examples against the, let’s say, Swarm cluster. That would allow us to see the benefits
in a more production-like setting. However, since the previous few chapters already stretched limits
of what could be run on a single laptop, I did not want to risk it and opted for a single VM. That
being said, all the examples are equally applicable to one, ten, hundred, or thousand servers. You
should have no problem extending them to you entire cluster.

1 vagrant up cd prod logging

2

3 vagrant ssh cd

Centralized Logging and Monitoring 351

Sending Log Entries to ElasticSearch

We’ll start by provisioning the logging server with the ELK stack (ElasticSearch, LogStash, and
Kibana). We’ll continue using Ansible for provisioning since it converted itself into our favorite
configuration management tool.

Let’s run the elk.yml³²⁹ playbook and explore it while it’s executing.

1 ansible-playbook /vagrant/ansible/elk.yml \

2 -i /vagrant/ansible/hosts/prod \

3 --extra-vars "logstash_config=file.conf"

The definition of the playbook is as follows.

1 - hosts: logging

2 remote_user: vagrant

3 serial: 1

4 roles:

5 - common

6 - docker

7 - elasticsearch

8 - logstash

9 - kibana

We used the common and the docker roles many times before, so we’ll skip them, and jump straight
into elasticsearch tasks defined in the roles/elasticsearch/tasks/main.yml³³⁰ file.

1 - name: Container is running

2 docker:

3 name: elasticsearch

4 image: elasticsearch

5 state: running

6 ports:

7 - 9200:9200

8 volumes:

9 /data/elasticsearch:/usr/share/elasticsearch/data

10 tags: [elasticsearch]

³²⁹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/elk.yml
³³⁰https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/elasticsearch/tasks/main.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/elk.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/elasticsearch/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/elk.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/elasticsearch/tasks/main.yml

Centralized Logging and Monitoring 352

Thanks to Docker, all we have to do is run the official elasticsearch image³³¹. It exposes its API
through the port 9200 and defines a single volume we’ll use to persist data in the host.

The next in line is the logstash³³² role. The tasks set in the roles/logstash/tasks/main.yml³³³ file are
as follows.

1 - name: Directory is present

2 file:

3 path: "{{ item.path }}"

4 recurse: yes

5 state: directory

6 mode: "{{ item.mode }}"

7 with_items: directories

8 tags: [logstash]

9

10 - name: File is copied

11 copy:

12 src: "{{ item.src }}"

13 dest: "{{ item.dest }}"

14 with_items: files

15 tags: [logstash]

16

17 - name: Container is running

18 docker:

19 name: logstash

20 image: logstash

21 state: running

22 expose:

23 - 5044

24 - 25826

25 - 25826/udp

26 - 25827

27 - 25827/udp

28 ports:

29 - 5044:5044

30 - 5044:5044/udp

31 - 25826:25826

32 - 25826:25826/udp

33 - 25827:25827

34 - 25827:25827/udp

³³¹https://hub.docker.com/_/elasticsearch/
³³²https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/logstash
³³³https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/tasks/main.yml

https://hub.docker.com/_/elasticsearch/
https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/logstash
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/tasks/main.yml
https://hub.docker.com/_/elasticsearch/
https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/logstash
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/tasks/main.yml

Centralized Logging and Monitoring 353

35 volumes:

36 - /data/logstash/conf:/conf

37 - /data/logstash/logs:/logs

38 links:

39 - elasticsearch:db

40 command: logstash -f /conf/{{ logstash_config }}

41 tags: [logstash]

While a big more numerous than the elasticsearch tasks, these are still pretty straightforward. The
tasks create a directory, copy few configuration files we’ll use throughout this chapter, and run the
official logstash image³³⁴. Since we’ll experiment with quite a few scenarios, different ports need to
be exposed and defined. The role exposes two volumes. The first one will hold configuration files
while we’ll use the second as a directory to place some logs. Finally, the task creates the link to the
elasticsearch container and specifies that the command should start logstash with the configuration
file defined as the variable. The commandwe used to run the playbook contained the logstash_config
variable set to file.conf³³⁵. Let us take a quick look at it.

1 input {

2 file {

3 path => "/logs/**/*"

4 }

5 }

6

7 output {

8 stdout {

9 codec => rubydebug

10 }

11 elasticsearch {

12 hosts => db

13 }

14 }

LogStash configurations consist of three main sections: input, output, and filters. We’ll skip filter,
for now, and focus on the other two.

The input section defines one or more log sources. In this case, we defined that input should be
handled through the file plugin³³⁶, with the path set to /logs/**/*. One asterisk means any file or
directory while two consecutive ones mean any file in any directory or subdirectory. The /logs/**/*
value can be described as any file in the /logs/ directory or any of its subdirectories. Bear in mind

³³⁴https://hub.docker.com/_/logstash/
³³⁵https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/files/file.conf
³³⁶https://www.elastic.co/guide/en/logstash/current/plugins-inputs-file.html

https://hub.docker.com/_/logstash/
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/files/file.conf
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-file.html
https://hub.docker.com/_/logstash/
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/files/file.conf
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-file.html

Centralized Logging and Monitoring 354

that, even though we specified only one input, there can, and often are, multiple inputs. For more
information on all the supported input plugins, please consult the official input plugins page³³⁷.

The output section defines the destination of log entries collected through the input. In this case, we
set two. The first one is using the stdout output plugin³³⁸ that will print everything to standard output
using rubydebug codec. Please note that we are using stdout only for demonstration purposes so that
we can quickly see the result. In a production setting, you should probably remove it for performance
reasons. The second output is more interesting. It uses the ElasticSearch output plugin³³⁹ to send all
the log entries to the database. Please note that the hosts variable is set to db. Since we linked the
logstash and elasticsearch containers, Docker created the db entry in the /etc/hosts file. For more
information on all supported output plugins, please consult the official output plugins page³⁴⁰.

This configuration file is probably one of the simplest we could start with. Before we see it
in action, let us go through the last element in the stack. Kibana will provide user interface
we can use to interact with ElasticSearch. The tasks of the kibana role³⁴¹ are defined in the
roles/kibana/tasks/main.yml³⁴² file. It contains backup restoration tasks that we’ll skip, for now,
and concentrate only on the part that runs the container.

1 - name: Container is running

2 docker:

3 image: kibana

4 name: kibana

5 links:

6 - elasticsearch:elasticsearch

7 ports:

8 - 5601:5601

9 tags: [kibana]

Just like the rest of the ELK stack, Kibana³⁴³ has the official Docker image. All we have to do is link
the container to elasticsearch, and expose the port 6501 that we’ll use to access the UI. We’ll see
Kibana in action soon.

Before we simulate some log entries, we’ll need to enter the logging node where the ELK stack is
running.

³³⁷https://www.elastic.co/guide/en/logstash/current/input-plugins.html
³³⁸https://www.elastic.co/guide/en/logstash/current/plugins-outputs-stdout.html
³³⁹https://www.elastic.co/guide/en/logstash/current/plugins-outputs-elasticsearch.html
³⁴⁰https://www.elastic.co/guide/en/logstash/current/output-plugins.html
³⁴¹https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/kibana/
³⁴²https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/kibana/tasks/main.yml
³⁴³https://hub.docker.com/_/kibana/

https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-stdout.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-elasticsearch.html
https://www.elastic.co/guide/en/logstash/current/output-plugins.html
https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/kibana/
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/kibana/tasks/main.yml
https://hub.docker.com/_/kibana/
https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-stdout.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-elasticsearch.html
https://www.elastic.co/guide/en/logstash/current/output-plugins.html
https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/kibana/
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/kibana/tasks/main.yml
https://hub.docker.com/_/kibana/

Centralized Logging and Monitoring 355

1 exit

2

3 vagrant ssh logging

Since the /data/logstash/logs volume is shared with the container, and LogStash is monitoring any
file inside it, we can create a log with a single entry.

1 echo "my first log entry" \

2 >/data/logstash/logs/my.log

Let us take a look at LogStash output and see what happened.

1 docker logs logstash

Please note that it might take a few seconds until the first log entry is processed, so, if the docker
logs command did not return anything, please re-execute it. All new entries to the same file will be
processed much faster.

The output is as follows.

1 {

2 "message" => "my first log entry",

3 "@version" => "1",

4 "@timestamp" => "2016-02-01T18:01:04.044Z",

5 "host" => "logging",

6 "path" => "/logs/my.log"

7 }

As you can see, LogStash processed our my first log entry and added a few additional pieces of
information. We got the timestamp, host name, and the path of the log file.

Let’s add a few more entries.

1 echo "my second log entry" \

2 >>/data/logstash/logs/my.log

3

4 echo "my third log entry" \

5 >>/data/logstash/logs/my.log

6

7 docker logs logstash

The output of the docker logs command is as follows.

Centralized Logging and Monitoring 356

1 {

2 "message" => "my first log entry",

3 "@version" => "1",

4 "@timestamp" => "2016-02-01T18:01:04.044Z",

5 "host" => "logging",

6 "path" => "/logs/my.log"

7 }

8 {

9 "message" => "my second log entry",

10 "@version" => "1",

11 "@timestamp" => "2016-02-01T18:02:06.141Z",

12 "host" => "logging",

13 "path" => "/logs/my.log"

14 }

15 {

16 "message" => "my third log entry",

17 "@version" => "1",

18 "@timestamp" => "2016-02-01T18:02:06.150Z",

19 "host" => "logging",

20 "path" => "/logs/my.log"

21 }

As expected, all three log entries were processed by LogStash, and the time has come to visualize
them through Kibana. Please open http://10.100.198.202:5601/³⁴⁴ from a browser. Since this is the first
time we run Kibana, it will ask us to configure an index pattern. Luckily, it already figured out what
the index format is (logstash-*), as well as which field contains timestamps (@timestamp). Please
click the Create button, followed with Discover located in the top menu.

³⁴⁴http://10.100.198.202:5601/

http://10.100.198.202:5601/
http://10.100.198.202:5601/

Centralized Logging and Monitoring 357

Figure 16-01: Kibana Discover screen with a few log entries

By default, the Discover screen displays all the entries generated in ElasticSearch during the last
fifteen minutes. We’ll explore functions this screen offers later on when we produce more logs. For
now, please click the arrow on the left-most column of one of the log entries. You’ll see all the fields
LogStash generated and sent to ElasticSearch. At the moment, since we are not using any filters,
those fields are limited to the message representing the whole log entry, and a few generic fields
LogStash generated.

The example we used was trivial, and it did not even look like a log entry. Let us increase
the complexity of our logs. We’ll use a few entries I prepared. The sample log is located in the
/tmp/apache.log file, and it contains a few log entries following the Apache format. Its content is as
follows.

1 127.0.0.1 - - [11/Dec/2015:00:01:45 -0800] "GET /2016/01/11/the-devops-2-0-toolk\

2 it/ HTTP/1.1" 200 3891 "http://technologyconversations.com" "Mozilla/5.0 (Macint\

3 osh; Intel Mac OS X 10.9; rv:25.0) Gecko/20100101 Firefox/25.0"

4 127.0.0.1 - - [11/Dec/2015:00:01:57 -0800] "GET /2016/01/18/clustering-and-scali\

5 ng-services/ HTTP/1.1" 200 3891 "http://technologyconversations.com" "Mozilla/5.\

6 0 (Macintosh; Intel Mac OS X 10.9; rv:25.0) Gecko/20100101 Firefox/25.0"

7 127.0.0.1 - - [11/Dec/2015:00:01:59 -0800] "GET /2016/01/26/self-healing-systems\

8 / HTTP/1.1" 200 3891 "http://technologyconversations.com" "Mozilla/5.0 (Macintos\

9 h; Intel Mac OS X 10.9; rv:25.0) Gecko/20100101 Firefox/25.0"

Since LogStash is expecting log files in the /data/logstash/logs/ directory, let us copy the sample.

Centralized Logging and Monitoring 358

1 cat /tmp/apache.log \

2 >>/data/logstash/logs/apache.log

Let us take a look the output LogStash generated.

1 docker logs logstash

LogStash might need a few seconds to detect that there is a new file to monitor. If the docker logs

output does not display anything new, please repeat the command. The output should be similar to
the following.

1 {

2 "message" => "127.0.0.1 - - [11/Dec/2015:00:01:45 -0800] \"GET /2016/01/1\

3 1/the-devops-2-0-toolkit/ HTTP/1.1\" 200 3891 \"http://technologyconversations.c\

4 om\" \"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:25.0) Gecko/20100101 Fire\

5 fox/25.0\"",

6 "@version" => "1",

7 "@timestamp" => "2016-02-01T19:06:21.940Z",

8 "host" => "logging",

9 "path" => "/logs/apache.log"

10 }

11 {

12 "message" => "127.0.0.1 - - [11/Dec/2015:00:01:57 -0800] \"GET /2016/01/1\

13 8/clustering-and-scaling-services/ HTTP/1.1\" 200 3891 \"http://technologyconver\

14 sations.com\" \"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:25.0) Gecko/2010\

15 0101 Firefox/25.0\"",

16 "@version" => "1",

17 "@timestamp" => "2016-02-01T19:06:21.949Z",

18 "host" => "logging",

19 "path" => "/logs/apache.log"

20 }

21 {

22 "message" => "127.0.0.1 - - [11/Dec/2015:00:01:59 -0800] \"GET /2016/01/2\

23 6/self-healing-systems/ HTTP/1.1\" 200 3891 \"http://technologyconversations.com\

24 \" \"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:25.0) Gecko/20100101 Firefo\

25 x/25.0\"",

26 "@version" => "1",

27 "@timestamp" => "2016-02-01T19:06:21.949Z",

28 "host" => "logging",

29 "path" => "/logs/apache.log"

30 }

The same data can be observed from Kibana running on http://10.100.198.202:5601/³⁴⁵.

³⁴⁵http://10.100.198.202:5601/

http://10.100.198.202:5601/
http://10.100.198.202:5601/

Centralized Logging and Monitoring 359

We just started, andwe already accomplished a vast improvement.When something fails on a server,
we do not need to know which service failed, nor where its logs are. We can get all the log entries
from that server from a single place. Anyone, be it a developer, tester, operator, or any other role,
can open Kibana running on that node, and inspect all the logs from all services and applications.

The last examples of the Apache log were more production-like than the first one we used. However,
the entries are still stored as one big message. While ElasticSearch is capable of searching almost
anything, in almost any format, we should help it a bit and try to split this log into multiple fields.

Parsing Log Entries

We mentioned earlier that LogStash configurations consist of three main sections: input, output,
and filters. The previous examples used only input and output, and the time has come to get
introduced to the third section. I already prepared an example configuration that can be found in
the roles/logstash/files/file-with-filters.conf³⁴⁶ file. Its content is as follows.

1 input {

2 file {

3 path => "/logs/**/*"

4 }

5 }

6

7 filter {

8 grok {

9 match => { "message" => "%{COMBINEDAPACHELOG}" }

10 }

11 date {

12 match => ["timestamp" , "dd/MMM/yyyy:HH:mm:ss Z"]

13 }

14 }

15

16 output {

17 stdout {

18 codec => rubydebug

19 }

20 elasticsearch {

21 hosts => db

22 }

23 }

³⁴⁶https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/files/file-with-filters.conf

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/files/file-with-filters.conf
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/files/file-with-filters.conf

Centralized Logging and Monitoring 360

The input and output sections are the same as before. The difference is the addition of the filter. Just
like the other two, we can use one or more of the plugins. In this case, we specified that the grok
filter plugin³⁴⁷ should be used. If for no other reason, the official description of the plugin should
compel you to at least try it out.

Grok is currently the best way in logstash to parse crappy unstructured log data into something
structured and queryable.

Grok sits on top of regular expressions, and LogStash already comes with quite a few patterns. They
can be found in the logstash-plugins/logstash-patterns-core³⁴⁸ repository. In our case, since the log
we used matches Apache format that is already included, all the had to do is tell LogStash to parse
the message using the COMBINEDAPACHELOG pattern. Later on, we’ll see how we can combine
different patterns but, for now, COMBINEDAPACHELOG should do.

The second filter we’ll be using is defined through the date plugin³⁴⁹. It will transform the timestamp
from log entries into LogStash format.

Please explore filter plugins³⁵⁰ in more details. Chances are you’ll find one, or more, that suit your
needs.

Let’s replace the file.conf with the file-with-filters.conf file, restart LogStash, and see how it behaves.

1 sudo cp /data/logstash/conf/file-with-filters.conf \

2 /data/logstash/conf/file.conf

3

4 docker restart logstash

With the new LogStash configuration, we can add a few more Apache log entries.

1 cat /tmp/apache2.log \

2 >>/data/logstash/logs/apache.log

3

4 docker logs logstash

The docker logs output of the last entry is as follows.

³⁴⁷https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
³⁴⁸https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
³⁴⁹https://www.elastic.co/guide/en/logstash/current/plugins-filters-date.html
³⁵⁰https://www.elastic.co/guide/en/logstash/current/filter-plugins.html

https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://www.elastic.co/guide/en/logstash/current/plugins-filters-date.html
https://www.elastic.co/guide/en/logstash/current/filter-plugins.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://www.elastic.co/guide/en/logstash/current/plugins-filters-date.html
https://www.elastic.co/guide/en/logstash/current/filter-plugins.html

Centralized Logging and Monitoring 361

1 {

2 "message" => "127.0.0.1 - - [12/Dec/2015:00:01:59 -0800] \"GET /api/v1/b\

3 ooks/_id/5 HTTP/1.1\" 200 3891 \"http://cadenza/xampp/navi.php\" \"Mozilla/5.0 (\

4 Macintosh; Intel Mac OS X 10.9; rv:25.0) Gecko/20100101 Firefox/25.0\"",

5 "@version" => "1",

6 "@timestamp" => "2015-12-12T08:01:59.000Z",

7 "host" => "logging",

8 "path" => "/logs/apache.log",

9 "clientip" => "127.0.0.1",

10 "ident" => "-",

11 "auth" => "-",

12 "timestamp" => "12/Dec/2015:00:01:59 -0800",

13 "verb" => "GET",

14 "request" => "/api/v1/books/_id/5",

15 "httpversion" => "1.1",

16 "response" => "200",

17 "bytes" => "3891",

18 "referrer" => "\"http://cadenza/xampp/navi.php\"",

19 "agent" => "\"Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:25.0) Ge\

20 cko/20100101 Firefox/25.0\""

21 }

As you can see, the message is still there in its entirety. In addition, this time we got quite a few
additional fields. The clientip, verb, referrer, agent, and other data, are all properly separated. This
will allow us to filter logs much more efficiently.

Let’s open Kibana running on the address http://10.100.198.202:5601/³⁵¹. One of the things you’ll
notice is that Kibana claims that no results are found even though we just parsed three log entries.
The reason behind that is in the second filter that transformed the log timestamp to the LogStash
format. Since, by default, Kibana displays last 15 minutes of logs, and log entries were made during
December 2015, they are indeed older than 15 minutes. Click on the Last 15 minutes button located
in the top-right corner of the screen, select Absolute and pick the range starting from December
1st to December 31th, 2015. That should give us all logs made during December 2015. Click the Go
button and observe that the three logs we just sent to ElasticSearch, through LogStash, are displayed
on the screen. You’ll notice that many new fields are available in the right-hand menu. We’ll use
them later when we explore Kibana filters. For now, the important thing to note is that this time we
parsed the log entries before sending them to ElasticSearch.

By employing LogStash filters, we improved the data that is stored in ElasticSearch. The solution
relies on the whole ELK stack being installed on the same server where logs are, and we can see
all the logs we decided to tail from a single interface (Kibana). The problem is that the solution is
limited to a single server. If, for example, we’d have ten servers, we’d need to install ten ELK stacks.

³⁵¹http://10.100.198.202:5601/

http://10.100.198.202:5601/
http://10.100.198.202:5601/

Centralized Logging and Monitoring 362

That would introduce quite a significant overhead on resources. ElasticSearch is memory hungry,
and LogStash can grab more CPU than what we would be willing to part from. Of equal importance
is that, while what we have by now is an improvement, it is far from ideal. We would still need
to know which server produced a problem and, potentially, go from one Kibana to another, when
trying to cross-reference different services and applications involved.

Figure 16-02: ELK stack running on a single server

Before I introduce you to the concept of decentralized logs and centralized logs parsing, let us remove
the LogStash instance and go back to the cd node.

1 docker rm -f logstash

2

3 exit

4

5 vagrant ssh cd

Sending Log Entries to a Central LogStash Instance

What we did by now is helpful, but it still does not solve the problem of having all logs in one place.
At the moment, we have all logs from a single server in a single location. How can we change that?

Centralized Logging and Monitoring 363

One simple solution would be to install LogStash on each server, and configure it to send entries to a
remote ElasticSearch. At least, that’s howmost companies I worked with solved it. Should we do the
same? The answer is no; we shouldn’t. The problem lies in LogStash itself. While it is an excellent
solution for collecting, parsing, and outputting logs, it uses too many resources. Having LogStash
installed on each and every server would result in a huge waste. Instead, we’ll use Filebeat.

Filebeat³⁵² is a lightweight shipper for log files and represents the next-generation of LogStash
Forwarder³⁵³. Just like LogStash, it tails log files. The difference is that it is optimized for just tailing
and sending logs. It will not do any parsing. Another difference is that it is written in Go. Those two
things alone make it much more resource efficient with such a small footprint that we can safely
run it on all servers without noticing a significant increase in memory and CPU consumption.

Before we see Filebeat in action, we need to change the input section of our LogStash configuration.
The new configuration is located in the roles/logstash/files/beats.conf³⁵⁴ file and its content is as
follows.

1 input {

2 beats {

3 port => 5044

4 }

5 }

6

7 output {

8 stdout {

9 codec => rubydebug

10 }

11 elasticsearch {

12 hosts => db

13 }

14 }

As you can see, the only difference is in the input section. It uses the beats plugin³⁵⁵ that is set to
listen to the port 5044. With this configuration, we can run a single LogStash instance, and have all
the other servers send their logs to this port.

Let’s deploy LogStash with these settings.

³⁵²https://www.elastic.co/products/beats/filebeat
³⁵³https://github.com/elastic/logstash-forwarder
³⁵⁴https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/files/beats.conf
³⁵⁵https://www.elastic.co/guide/en/logstash/current/plugins-inputs-beats.html

https://www.elastic.co/products/beats/filebeat
https://github.com/elastic/logstash-forwarder
https://github.com/elastic/logstash-forwarder
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/files/beats.conf
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-beats.html
https://www.elastic.co/products/beats/filebeat
https://github.com/elastic/logstash-forwarder
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/files/beats.conf
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-beats.html

Centralized Logging and Monitoring 364

1 ansible-playbook /vagrant/ansible/elk.yml \

2 -i /vagrant/ansible/hosts/prod \

3 --extra-vars "logstash_config=beats.conf"

LogStash is now running inside the logging server and listening for beats packets on port 5044.
Before we proceed and deploy Filebeat on, let’s say, the prod node, let us take a quick look at the
prod3.yml³⁵⁶ playbook.

1 - hosts: prod

2 remote_user: vagrant

3 serial: 1

4 roles:

5 - common

6 - docker

7 - docker-compose

8 - consul

9 - registrator

10 - consul-template

11 - nginx

12 - filebeat

The only new addition is the roles/filebeat³⁵⁷ role. Its tasks, defined in the roles/filebeat/tasks/-
main.yml³⁵⁸ file, are as follows.

1 - name: Download the package

2 get_url:

3 url: https://download.elastic.co/beats/filebeat/filebeat_1.0.1_amd64.deb

4 dest: /tmp/filebeat.deb

5 tags: [filebeat]

6

7 - name: Install the package

8 apt:

9 deb: /tmp/filebeat.deb

10 tags: [filebeat]

11

12 - name: Configuration is present

13 template:

14 src: filebeat.yml

15 dest: /etc/filebeat/filebeat.yml

³⁵⁶https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod3.yml
³⁵⁷https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/filebeat/
³⁵⁸https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/filebeat/tasks/main.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod3.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/filebeat/
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/filebeat/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/filebeat/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod3.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/filebeat/
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/filebeat/tasks/main.yml

Centralized Logging and Monitoring 365

16 tags: [filebeat]

17

18 - name: Service is started

19 service:

20 name: filebeat

21 state: started

22 tags: [filebeat]

The tasks will download the package, install it, copy the configuration, and, finally, run the service.
The only thing worth looking at is the roles/filebeat/templates/filebeat.yml³⁵⁹ configuration file.

1 filebeat:

2 prospectors:

3 -

4 paths:

5 - "/var/log/**/*.log"

6

7 output:

8 logstash:

9 hosts: ["{{ elk_ip }}:5044"]

The filebeat section specifies a list of prospectors which are used to locate and process log files.
Each prospector item begins with a dash (-) and specifies prospector-specific configuration options,
including the list of paths that are crawled to locate log files. In our case, we’re having only one
path set to /var/log/**/*.log. When started, Filebeat will look for all files ending in .log located in the
*/var/log/ directory, or any of its subdirectories. Since that happens to be the location where most
of Ubuntu logs are located, we’ll have quite a lot of log entries to process.

The output section is used to send log entries to various destinations. In our case, we specified
LogStash as the only output. Since the current LogStash configuration does not have any filtering,
we could have set ElasticSearch as output, and the result would be the same, but with less overhead.
However, since it is very likely that we’ll add some filters in the future, the output is set to logstash.

Please note that filters are a blessing and a curse at the same time. They allow us to split log entries
into easier-to-manage fields. On the other hand, if log formats differ too much, you might spend
an eternity writing parsers. Whether you should use filters, or depend on ElasticSearch filtering
capabilities without specialized fields, is entirely up to you. I tend to go both ways. If log contains
an important piece of information (as you will see in one of the following examples), filtering logs is
a must. If log entries are generic messages without analytical value, I skip filtering altogether. With
a bit of practice, you’ll establish your rules.

³⁵⁹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/filebeat/templates/filebeat.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/filebeat/templates/filebeat.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/filebeat/templates/filebeat.yml

Centralized Logging and Monitoring 366

For more information about configuration options, please consult the Filebeat configuration de-
tails³⁶⁰ page.

Let’s run the playbook and see Filebeat in action.

1 ansible-playbook /vagrant/ansible/prod3.yml \

2 -i /vagrant/ansible/hosts/prod

Now that Filebeat is running in the prod node, we can take a look at logs generated by LogStash
running on the logging server.

1 docker -H tcp://logging:2375 \

2 logs logstash

The last few lines of the docker logs command are as follows.

1 ...

2 {

3 "message" => "ttyS0 stop/pre-start, process 1301",

4 "@version" => "1",

5 "@timestamp" => "2016-02-02T14:50:45.557Z",

6 "beat" => {

7 "hostname" => "prod",

8 "name" => "prod"

9 },

10 "count" => 1,

11 "fields" => nil,

12 "input_type" => "log",

13 "offset" => 0,

14 "source" => "/var/log/upstart/ttyS0.log",

15 "type" => "log",

16 "host" => "prod"

17 }

FileBeats sent all the log entries from the /var/log/ directory in the prod node to LogStash running in
the logging server. It did that without breaking a sweat and, as a result, we got over 350 log entries
stored in ElasticSearch. OK, 350 log entries is not something to brag about, but, it there were 350000,
it would still do it effortlessly.

Let’s confirm that logs reached Kibana. Please open http://10.100.198.202:5601/³⁶¹. If you see no
entries, it means that more than fifteen minutes passed, and you should increase the time by clicking
the time selector button in the top-right corner of the screen.

³⁶⁰https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-configuration-details.html
³⁶¹http://10.100.198.202:5601/

https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-configuration-details.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-configuration-details.html
http://10.100.198.202:5601/
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-configuration-details.html
http://10.100.198.202:5601/

Centralized Logging and Monitoring 367

Please note that every time a new field type is added to ElasticSearch index, we should recreate the
pattern. We can do that by navigating to the Settings screen and clicking the Create button.

We, again, improved the solution quite a bit. There is a central placewhere logs are parsed (LogStash),
stored (ElasticSearch), and explored (Kibana). We can plug in any number of servers with Filebeat
running on each of them. It will tail logs and send them to LogStash.

Figure 16-03: ELK stack running on a single server with Filebeat distributed to the whole cluster

Let’s up the ante a bit and apply what we learned to Docker containers. Since we’ll change the
LogStash configuration, let us end this section by removing the running instance.

Centralized Logging and Monitoring 368

1 docker -H tcp://logging:2375 \

2 rm -f logstash

Sending Docker Log Entries to a Central LogStash
Instance

Since we are using containers, we can run themwith volume sharing the directory where the service
is writing its logs. Shall we do that? The answer is no and, at this time, you probably think that I
am continuously leading you from one wrong solution to another. What I’m really trying to do is
to build the solution step by step and, at the same time, show you different paths that you might
choose to take. My preferred solution does not necessarily have to be adopted by you. The more
choices you have, the more informed decisions you’ll make.

Let’s go back to the subject of writing logs to a file and shipping them to LogStash. My, strongly
subjective, opinion is that all logs, no matter the way we package our services, should be sent to
standard output or error (stdout or stderr). There are many practical reasons for this opinion which,
be it as it may, I won’t elaborate. I already received quite a few emails from people stating that my
views and practices are too radical (most of them got a response saying that the century changed
more than fifteen years ago). I’ll just try to avoid another war on the logging subject in general terms,
and skip to reasons for not writing logs to files when services are deployed inside containers. Two of
them stick from the crowd. First of all, the less we use volumes, the less are containers dependent on
the host they’re running on, and easier it is to move them around (either in the case of a failure or
for scaling purposes). The second reason is that Docker’s logging drivers³⁶² expect logs to be sent to
stdout and stderr. By not writing logs to files, we avoid coupling with a server or particular logging
technology.

If you are about to send me a hate email stating that log files are a grace from heaven, please note
that I am referring to their output destination when generated inside containers (even though I

was applying the rule before I started using them).

What is the alternative to exposing container directory with logs as a volume? Docker introduced
logging driver feature in its version 1.6. While it passed mostly unnoticed, it is a very cool capability
and was a huge step toward creating a comprehensive approach to logging in Docker environments.
Since then, besides the default json-file driver, we got syslog, journald, gelf, fluentd, splunk, and
awslogs. By the time you read this book, new ones might have arrived as well.

Now that we decided to use Docker’s logging drivers³⁶³, the question arises which one to choose.
The GELF driver writes messages in Greylog Extended Log Format supported by LogStash. If all we
need is to store logs generated by our containers, this is a good option. On the other hand, if we want
not only logs generated by services running inside containers but also from the rest of the system,

³⁶²https://docs.docker.com/engine/reference/logging/overview/
³⁶³https://docs.docker.com/engine/reference/logging/overview/

https://docs.docker.com/engine/reference/logging/overview/
https://docs.docker.com/engine/reference/logging/overview/
https://docs.docker.com/engine/reference/logging/overview/
https://docs.docker.com/engine/reference/logging/overview/

Centralized Logging and Monitoring 369

we might opt for JournalD or syslog. In such a case, we’d get truly (almost) complete information
about everything that happens, not only inside containers but on the whole OS level. The later option
(JournalD or syslog) is preferable when there is a substantial available memory for ElasticSearch
(more logs equals more memory consumption), and that is the one we’ll explore deeper. Do not get
scared by ElasticSearch’s need for a lot of memory. With clever cleanups of old data, this can be
easily mitigated. We’ll skip the debate whether JournalD is a better or worse solution than syslog,
and use the latter. It does not matter which one is your preference since the same set of principles
applies to both.

This time, we’ll use the roles/logstash/files/syslog.conf³⁶⁴ file as LogStash configuration. Let’s go
through its sections one by one.

1 input {

2 syslog {

3 type => syslog

4 port => 25826

5 }

6 }

The input section should be self-explanatory. We’re using the syslog plugin³⁶⁵ with two settings.
The first one adds a type field to all events handled by this input. It will help us distinguish logs
coming from syslog, from those we’re generating through other methods. The port setting states
that LogStash should listen on 25826 for syslog events.

The filter section of the config file is a bit more complicated. I decided to use it mostly as a way to
showcase a fraction of what can be done through filters.

1 filter {

2 if "docker/" in [program] {

3 mutate {

4 add_field => {

5 "container_id" => "%{program}"

6 }

7 }

8 mutate {

9 gsub => [

10 "container_id", "docker/", ""

11]

12 }

13 mutate {

14 update => [

³⁶⁴https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/files/syslog.conf
³⁶⁵https://www.elastic.co/guide/en/logstash/current/plugins-inputs-syslog.html

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/files/syslog.conf
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-syslog.html
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/logstash/files/syslog.conf
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-syslog.html

Centralized Logging and Monitoring 370

15 "program", "docker"

16]

17 }

18 }

19 if [container_id] == "nginx" {

20 grok {

21 match => ["message" , "%{COMBINEDAPACHELOG} %{HOSTPORT:upstream_address} \

22 %{NOTSPACE:upstream_response_time}"]

23 }

24 mutate {

25 convert => ["upstream_response_time", "float"]

26 }

27 }

28 }

It starts with an if statement. Docker will send logs to syslog with a value of the program field
set in the docker/[CONTAINER_ID] format. We are leveraging that fact to distinguish log entries
coming from Docker, from those generated through some other means. Inside the if statement, we
are performing a few mutations. The first one is the addition of a new field called container_id that,
for now, has the same value as the program field. The second mutation is the removal of the docker/
part of that value so that we are left with only container ID. Finally, we change the value of the
program field to docker.

Variables, and their values, before and after mutations, are as follows.

Variable name Value before Value after

program docker/[CONTAINER_ID] docker
container_id / [CONTAINER_ID]

The second conditional starts by checking whether the container_id is set to nginx. If it is, it parses
the message using the COMBINEDAPACHELOG pattern that we already saw in action and adds to it
two new fields called upstream_address and upstream_response_time. Both of those fields also use
predefined grok patterns HOSTPORT and NOTSPACE. If you’d like to dive deeper, and take a closer
look at those patterns, please consult the logstash-plugins/logstash-patterns-core³⁶⁶ repository. If
you are familiar with regular expressions, this should be easy to understand (if there is such a thing
as easy with RegEx). Otherwise, you might want to rely on declared names to find the expression
you need (at least until you learn regular expressions). The truth is that RegEx is a very powerful
language for parsing text but, at the same time, very hard to master.

My wife claimed that my hair went gray at approximately the same time I worked on a project
that required quite a lot of regular expressions. That is one of the few things we agreed on.

³⁶⁶https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns

https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns

Centralized Logging and Monitoring 371

Finally, the mutation inside nginx conditional transforms upstream_response_time field from string
(default) to float. We’ll use this information later on, and will need it to be a number.

The third and the last section of the configuration file is output.

1 output {

2 stdout {

3 codec => rubydebug

4 }

5 elasticsearch {

6 hosts => db

7 }

8 }

It is the same as the previous ones. We’re sending filtered log entries to standard output and
ElasticSearch.

Now that we understand the configuration file, or, at least, pretend that we do, we can deploy
LogStash one more time through the Ansible playbook elk.yml³⁶⁷.

1 ansible-playbook /vagrant/ansible/elk.yml \

2 -i /vagrant/ansible/hosts/prod \

3 --extra-vars "logstash_config=syslog.conf"

Now we have LogStash up and running, and configured to use syslog as input. Let’s remove the
currently running nginx instance and run it again with Docker log driver set to syslog. While at
it, we’ll also provision the prod node with syslog. The prod4.yml³⁶⁸ playbook that we’ll use is as
follows.

1 - hosts: prod

2 remote_user: vagrant

3 serial: 1

4 vars:

5 - log_to_syslog: yes

6 roles:

7 - common

8 - docker

9 - docker-compose

10 - consul

11 - registrator

³⁶⁷https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/elk.yml
³⁶⁸https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod4.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/elk.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod4.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/elk.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod4.yml

Centralized Logging and Monitoring 372

12 - consul-template

13 - nginx

14 - rsyslog

As you can see, this playbook is similar to the others we used for provisioning the prod server. The
difference is in the log_to_syslog variable, and the addition of the rsyslog role.

The relevant part of the nginx tasks defined in the roles/nginx/tasks/main.yml³⁶⁹ file is as follows.

1 - name: Container is running

2 docker:

3 image: nginx

4 name: nginx

5 state: running

6 ports: "{{ ports }}"

7 volumes: "{{ volumes }}"

8 log_driver: syslog

9 log_opt:

10 syslog-tag: nginx

11 when: log_to_syslog is defined

12 tags: [nginx]

The difference is in the addition of log_driver and log_opt declarations. The first one sets Docker
log driver to syslog. The log_opt can be used to specify additional logging options, which depend
on a driver. In this case, we are specifying the tag. Without it, Docker would use container ID to
identify logs sent to syslog.That was, when we query ElasticSearch, it will be much easier to find
nginx entries.

The rsyslog tasks defined in the roles/rsyslog/tasks/main.yml³⁷⁰ file are as follows.

1 - name: Packages are present

2 apt:

3 name: "{{ item }}"

4 state: latest

5 install_recommends: no

6 with_items:

7 - rsyslog

8 - logrotate

9 tags: [rsyslog]

10

³⁶⁹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/nginx/tasks/main.yml
³⁷⁰https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/rsyslog/tasks/main.yml

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/nginx/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/rsyslog/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/nginx/tasks/main.yml
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/rsyslog/tasks/main.yml

Centralized Logging and Monitoring 373

11 - name: Config file is present

12 template:

13 src: 10-logstash.conf

14 dest: /etc/rsyslog.d/10-logstash.conf

15 register: config_result

16 tags: [rsyslog]

17

18 - name: Service is restarted

19 shell: service rsyslog restart

20 when: config_result.changed

21 tags: [rsyslog]

It will make sure that rsyslog and logrotate packages are installed, copy the 10-logstash.conf
configuration file, and restart the service. The roles/rsyslog/templates/10-logstash.conf³⁷¹ template
is as follows.

1 *.* @@{{ elk_ip }}:25826

Please note that the file is an Ansible’s template and that {{ elk_ip }} will be replaced with the IP.
The configuration is dead simple. Everything sent to syslog will be re-sent to the LogStash running
on the specified IP and port.

Now we’re ready to remove the currently running nginx container and run the playbook.

1 docker -H tcp://prod:2375 \

2 rm -f nginx

3

4 ansible-playbook /vagrant/ansible/prod4.yml \

5 -i /vagrant/ansible/hosts/prod

Let’s see what was sent to LogStash.

1 docker -H tcp://logging:2375 \

2 logs logstash

You should see the syslog entries generated by the system. One of them might look as follows.

³⁷¹https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/rsyslog/templates/10-logstash.conf

https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/rsyslog/templates/10-logstash.conf
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/roles/rsyslog/templates/10-logstash.conf

Centralized Logging and Monitoring 374

1 {

2 "message" => "[55784.504413] docker0: port 3(veth4024c56) entered for\

3 warding state\n",

4 "@version" => "1",

5 "@timestamp" => "2016-02-02T21:58:23.000Z",

6 "type" => "syslog",

7 "host" => "10.100.198.201",

8 "priority" => 6,

9 "timestamp" => "Feb 2 21:58:23",

10 "logsource" => "prod",

11 "program" => "kernel",

12 "severity" => 6,

13 "facility" => 0,

14 "facility_label" => "kernel",

15 "severity_label" => "Informational"

16 }

We can also explore the same data through Kibana running on http://10.100.198.202:5601/³⁷².

Let’s see what happens when we deploy our services packed into containers. First we’ll enter the
prod node from which we’ll run the books-ms service.

1 exit

2

3 vagrant ssh prod

4

5 git clone https://github.com/vfarcic/books-ms.git

6

7 cd books-ms

Before we deploy the books-ms service, let us take a quick look at the docker-compose-logging.yml³⁷³
file.

³⁷²http://10.100.198.202:5601/
³⁷³https://github.com/vfarcic/books-ms/blob/master/docker-compose-logging.yml

http://10.100.198.202:5601/
https://github.com/vfarcic/books-ms/blob/master/docker-compose-logging.yml
http://10.100.198.202:5601/
https://github.com/vfarcic/books-ms/blob/master/docker-compose-logging.yml

Centralized Logging and Monitoring 375

1 app:

2 image: 10.100.198.200:5000/books-ms

3 ports:

4 - 8080

5 links:

6 - db:db

7 environment:

8 - SERVICE_NAME=books-ms

9 log_driver: syslog

10 log_opt:

11 syslog-tag: books-ms

12

13 db:

14 image: mongo

15 log_driver: syslog

16 log_opt:

17 syslog-tag: books-ms

As you can see, it follows the same logic as the onewe used to provision nginx withAnsible. The only
difference is that, in this case, it is Docker Compose configuration. It contains the same log_driver
and log_opt keys.

Now that we understand the changes we had to add to the Docker Compose configuration, we can
deploy the service.

1 docker-compose -p books-ms \

2 -f docker-compose-logging.yml \

3 up -d app

Let’s double check that it is indeed running by listing and filtering Docker processes.

1 docker ps --filter name=booksms

Now that the service is up and running, with the syslog logging driver, we should verify that log
entries were indeed sent to LogStash.

1 docker -H tcp://logging:2375 \

2 logs logstash

Part of the output is as follows.

Centralized Logging and Monitoring 376

1 {

2 "message" => "[INFO] [02/03/2016 13:28:35.869] [routingSystem-akka.ac\

3 tor.default-dispatcher-5] [akka://routingSystem/user/IO-HTTP/listener-0] Bound t\

4 o /0.0.0.0:8080\n",

5 "@version" => "1",

6 "@timestamp" => "2016-02-03T13:28:35.000Z",

7 "type" => "syslog",

8 "host" => "10.100.198.201",

9 "priority" => 30,

10 "timestamp" => "Feb 3 13:28:35",

11 "logsource" => "prod",

12 "program" => "docker",

13 "pid" => "11677",

14 "severity" => 6,

15 "facility" => 3,

16 "facility_label" => "system",

17 "severity_label" => "Informational",

18 "container_id" => "books-ms"

19 }

Service logs are indeed sent to LogStash. Please notice that LogStash filters did what we told them
to do. The program field was transformed from docker/books-ms to docker, and a new field called
container_id was created. Since we defined message parsing only when container_id is nginx, it
stayed intact.

Let us confirm that message parsing is indeed working correctly for log entries coming from nginx.
We’ll need to make a few requests to the proxy, so we’ll start by configuring it properly.

1 cp nginx-includes.conf \

2 /data/nginx/includes/books-ms.conf

3

4 consul-template \

5 -consul localhost:8500 \

6 -template "nginx-upstreams.ctmpl:\

7 /data/nginx/upstreams/books-ms.conf:\

8 docker kill -s HUP nginx" \

9 -once

You already used nginx configurations and Consul Template, so there is no need for an explanation
of those commands.

Now that the service is running, is integrated, and is sending logs to LogStash, let us generate a few
nginx log entries by making a few requests.

Centralized Logging and Monitoring 377

1 curl -I localhost/api/v1/books

2

3 curl -H 'Content-Type: application/json' -X PUT -d \

4 "{\"_id\": 1,

5 \"title\": \"My First Book\",

6 \"author\": \"John Doe\",

7 \"description\": \"Not a very good book\"}" \

8 localhost/api/v1/books | jq '.'

9

10 curl http://prod/api/v1/books | jq '.'

Let’s see what did LogStash receives this time.

1 docker -H tcp://logging:2375 \

2 logs logstash

Part of the output of the docker logs command is as follows.

1 {

2 "message" => "172.17.0.1 - - [03/Feb/2016:13:37:12 +0000] \"G\

3 ET /api/v1/books HTTP/1.1\" 200 269 \"-\" \"curl/7.35.0\" 10.100.198.201:32768 0\

4 .091 \n",

5 "@version" => "1",

6 "@timestamp" => "2016-02-03T13:37:12.000Z",

7 "type" => "syslog",

8 "host" => "10.100.198.201",

9 "priority" => 30,

10 "timestamp" => [

11 [0] "Feb 3 13:37:12",

12 [1] "03/Feb/2016:13:37:12 +0000"

13],

14 "logsource" => "prod",

15 "program" => "docker",

16 "pid" => "11677",

17 "severity" => 6,

18 "facility" => 3,

19 "facility_label" => "system",

20 "severity_label" => "Informational",

21 "container_id" => "nginx",

22 "clientip" => "172.17.0.1",

23 "ident" => "-",

24 "auth" => "-",

Centralized Logging and Monitoring 378

25 "verb" => "GET",

26 "request" => "/api/v1/books",

27 "httpversion" => "1.1",

28 "response" => "200",

29 "bytes" => "269",

30 "referrer" => "\"-\"",

31 "agent" => "\"curl/7.35.0\"",

32 "upstream_address" => "10.100.198.201:32768",

33 "upstream_response_time" => 0.091

34 }

This time, not only that we stored logs coming from containers, but we also parsed them. The main
reason for parsing nginx logs lies in the upstream_response_time field. Can you guess why? While
you think about possible usages of that field, let us take a closer look at a few of the features of the
Discover screen in Kibana.

We generated quite enough logs, so we might, just as well, want to start using Kibana filters. Please
open http://10.100.198.202:5601/³⁷⁴. Please change the time to, let’s say, 24 hours, by clicking the top-
right button. That will give us plenty of time to “play” with the few logs we created. Before we jump
into filtering, please go to the Settings screen, and click Create. That will refresh our index pattern
with new fields. When finished, please return to the Discover screen.

Let us begin with the left-hand menu. It contains all the available fields, found in all logs that
match given period. Clicking on any of those fields provides us with the list of values it holds.
For example, container_id contains books-ms and nginx. Next to those values are icons with the
magnifying glass. The one with the plus sign can be used to filter only entries that contain that
value. Similarly, the icon with the minus sign can be used to exclude records. Click the icon with
the plus sign next to nginx. As you can see, only log entries coming from nginx are displayed. The
result of applied filters is located in the horizontal bar above. Hovering over one of the filters (in
this case container_id: “nginx”), allows us to use additional options to enable, disable, pin, unpin,
invert, toggle, and remove that filter.

³⁷⁴http://10.100.198.202:5601/

http://10.100.198.202:5601/
http://10.100.198.202:5601/

Centralized Logging and Monitoring 379

Figure 16-04: Kibana Discover screen with log entries filtered by container_id nginx

At the top of the main frame is a graph with the number of logs distributed over the specified period.
Below it is a table with log entries. By default, it shows the Time and the _source columns. Please
click the arrow icon on the left side of one of the rows. It expands the row to display all the fields
available in that log entry. They are a combination of data generated by LogStash and those we
parsed through its configuration. Each field has the same icons as those we found in the left-hand
menu. Through them, we can filter for value or filter out value. The third button, represented by
an icon that looks like a single row table with two columns, can be used to toggle that column in
table. Since default columns are not very useful, not to say boring, please toggle logsource, request,
verb, upstream_address, and upstream_response_time. Click, again, the arrow, to hide the fields.
We just got ourselves a nice table that shows some of the most important pieces of information
coming from nginx. We can see that the server where requests are made (logsource), the address of
requests (request), the type of requests (verb), how much it took to receive responses (upstream_-
response_time), and where were the requests proxied to (upstream_address). If you think the search
you created is useful, you can save it by clicking the Save Search button located in the top-right part
of the screen. Next to it is the Load Saved Search button.

Centralized Logging and Monitoring 380

Figure 16-05: Kibana Discover screen with log entries filtered by container_id nginx and custom columns

We’ll explore Visualize and Dashboard screens a bit later.

Let’s us summarize the flow we have at this moment.

• Containers are deployed with Docker’s logging driver set to syslog. With such a configuration,
Docker redirects everything that is sent to standard output, or error (stdout/stderr), to syslog.

• All the log entries, be it from containers or processes deployed through other methods, are
redirected from syslog to LogStash.

• LogStash receives syslog events, applies filters and transformations, and re-sends them to
ElasticSearch.

• Everybody is happy, because finding specific log entries is a breeze, and life, during office
hours, is a bit easier to cope with.

Centralized Logging and Monitoring 381

Figure 16-06: ELK stack running on a single server with containers logging to syslog

Self-Healing Based on Software Data

Let us put the response time we are logging through nginx to a good use. Since data is stored in
ElasticSearch, we might do a few quick examples of using its API. We can, for instance, retrieve all
entries stored inside the logstash index.

1 curl 'http://logging:9200/logstash-*/_search' \

2 | jq '.'

Elastic search returned the first ten entries (default page size), together with some additional
information, like the total number of records. There’s not much use in retrieving all the entries, so let
us try to narrow it down. We can, for example, request all records that have nginx as container_id
value.

Centralized Logging and Monitoring 382

1 curl 'http://logging:9200/logstash-*/_search?q=container_id:nginx' \

2 | jq '.'

The results are the same three entries we observed from LogStash logs. Again, there’s not much
use of them. If this were a production system, we would get thousands upon thousands of results
(distributed among multiple pages).

This time, let us try something truly useful. We’ll analyze data and, for example, retrieve the average
response time from nginx logs.

1 curl 'http://logging:9200/logstash-*/_search?q=container_id:nginx' \

2 -d '{

3 "size": 0,

4 "aggs": {

5 "average_response_time": {

6 "avg": {

7 "field": "upstream_response_time"

8 }

9 }

10 }

11 }' | jq '.'

The output of the last command is as follows.

1 {

2 "aggregations": {

3 "average_response_time": {

4 "value": 0.20166666666666666

5 }

6 },

7 "hits": {

8 "hits": [],

9 "max_score": 0,

10 "total": 3

11 },

12 "_shards": {

13 "failed": 0,

14 "successful": 10,

15 "total": 10

16 },

17 "timed_out": false,

18 "took": 26

19 }

Centralized Logging and Monitoring 383

With something like that request, we can extend our self-healing system and, for example, retrieve
average response time of a service during last hour. If responses were, on average, slow, we could
scale the service. Similarly, if responses were fast, we can descale it.

Let’s filter the results so that only those made by nginx, with a request to /api/v1/books (the address
of our service), and created during the last hour, are retrieved. Once data is filtered, we’ll aggregate
all the results and get the average value of the upstream_response_time field.

The chances are that more than one hour passed since you sent a request to the service through
nginx. If that’s the case, the resulting value would be null since there are no records that would
match the filter we are about to make. We can easily fix that, by making, let’s say, a hundred new
requests.

1 for i in {1..100}; do

2 curl http://prod/api/v1/books | jq '.'

3 done

Now that we have recent data, we can ask ElasticSearch to give us the average response time.

1 curl 'http://logging:9200/logstash-*/_search' \

2 -d '{

3 "size": 0,

4 "aggs": { "last_hour": {

5 "filter": {

6 "bool": { "must": [{

7 "query": { "match": {

8 "container_id": {

9 "query": "nginx",

10 "type": "phrase"

11 }

12 } }

13 }, {

14 "query": { "match": {

15 "request": {

16 "query": "/api/v1/books",

17 "type": "phrase"

18 }

19 } }

20 }, {

21 "range": { "@timestamp": {

22 "gte": "now-1h",

23 "lte": "now"

24 } }

Centralized Logging and Monitoring 384

25 }] }

26 },

27 "aggs": {

28 "average_response_time": {

29 "avg": {

30 "field": "upstream_response_time"

31 }

32 }

33 }

34 } }

35 }' | jq '.'

The ElasticSearch API and the Lucene engine³⁷⁵ used in the background are so vast that it would
require a whole book to describe it, so the explanation is out of the scope of this book. You can find
detailed information in the Document APIs³⁷⁶ page.

The output of the request will vary from one case to another. My result was as follows.

1 {

2 "aggregations": {

3 "last_hour": {

4 "average_response_time": {

5 "value": 0.005744897959183675

6 },

7 "doc_count": 98

8 }

9 },

10 "hits": {

11 "hits": [],

12 "max_score": 0,

13 "total": 413

14 },

15 "_shards": {

16 "failed": 0,

17 "successful": 10,

18 "total": 10

19 },

20 "timed_out": false,

21 "took": 11

22 }

³⁷⁵https://lucene.apache.org/core/
³⁷⁶https://www.elastic.co/guide/en/elasticsearch/reference/current/docs.html

https://lucene.apache.org/core/
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs.html
https://lucene.apache.org/core/
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs.html

Centralized Logging and Monitoring 385

We can now take this response time and, depending on the rules we set, scale, descale, or do nothing.
Right nowwe have all the elements to extend our self-healing system.We have the process that stores
response times in ElasticSearch and the API to analyze data. We can create one more Consul watch
that will, periodically, query the API and, if an action is needed, send a request to Jenkins to prevent
the disease from spreading. I’ll leave that to you, as a few exercises.

Exercise: scaling the service if response time is too long
Create a new Consul watch that will use the ElasticSearch request we created, and invoke
a Jenkins job that will scale the service if the average response time is too long. Similarly,
descale the service if the response time is too short, and more than two instances are
running (less than two poses a downtime risk).

Without introducing more complexity, we can try other types of future predictions. We can, for
example, predict the future by observing the previous day.

Exercise: predict the future by observing the past
Repeat the process from the previous exercise with the different analysis.

Variables:

• T : The current time
• AVG1: Average traffic between T and T+1h of the previous day.
• AVG2: Average traffic between T+1h and T+2h of the previous day.

The task:

• Calculate the increase (or the decrease) of the traffic between AVG1 and AVG2.
• Decide whether to scale, de-scale, or do nothing.

We do not need to base our analysis only on the previous day. We can also evaluate the same day
of the preceding week, of the past month, or even of the last year. Do we have an increase in traffic
every first day of the month? What happened on Christmas day last year? Do people visit our store
less after summer vacations? The beauty is not only that we have the data to answer those questions,
but we can incorporate the analysis into the system and run it periodically.

Bear in mind that some of the analysis are better of running as Consul watches, while the others
belong to Jenkins. Tasks that should be run periodically with the same frequency are good use cases
for Consul. While they can run as easily from Jenkins, Consul is more lightweight, and will use
fewer resources. Examples would be every hour or every 5 minutes. On the other hand, Consul does
not have a proper scheduler. If you’d like to run analysis at specific moments in time, Jenkins with

Centralized Logging and Monitoring 386

its cron-like scheduler is a better fit. Examples would be each day at midnight, each first day of a
month, two weeks before Christmas, and so on. You should evaluate both tools for each given case,
and choose the one that fits better. An alternative would be to run all such analysis from Jenkins
and benefit from having everything in one place. Then again, you might opt for an entirely different
set of tools. I’ll leave the choice to you. The importance lies in understanding the process and the
goals we want to accomplish.

Please note that I provided one example that can be used as a self-healing process. Response times
analysis does not have to be the only thing we do. Look at the data you can collect, decide what is
useful, and what isn’t, and make other types of data crunching. Collect everything you need, but
not more. Do not fall into the trap of storing all you can think of, without using it. That is a waste of
memory, CPU, and hard disk space. Do not forget to set up a process that periodically cleans data.
You won’t need all the logs from a year ago. Heck, you probably won’t need most of the logs older
than a month. If a problem is not found within thirty days, the chances are that there is no problem
and, even if there is, it relates to an old release not running anymore. If, after reading this book, your
release cycle lasts for months, and you are not planning to shorten it, I failed miserably. Please do
not send me an email confirming this. It would only make me feel depressed.

That was a short detour from the main subject of the chapter (logging and monitoring). Since the
book is mostly based on hands-on examples, I could not explain self-healing based on historical
response times without having data to work with. Therefore, this discussion was added here.
Throughout the rest of this chapter, there will be at one more excursion into a subject that might just
as well belong to the Self-Healing Systems chapter. Now, let’s get back to logging and monitoring.

Since we have all the information representing the past and the present status of the cluster, we
can… This is the moment I imagine you, dear reader, rolling your eyes andmumbling to yourself that
software logs do not constitute the full information about the cluster. Only software (logs), together
with hardware data (metrics), can be close to a complete information about the cluster. Then again,
my imagination might not (and often doesn’t) represent reality. You might not have rolled your eyes,
or even noticed that hardware is missing. If that’s the case, you are not paying close attention to
what I wrote, and should have a good night sleep, or, at least, grab a coffee. Truth be told, we do
have hardware information in Consul, but that is only the current status. We cannot analyze that
data, see tendencies, find out why something happened, nor predict the future. If you are still awake,
let’s look at how we can log hardware status.

Before we move on, we’ll remove the currently running LogStash instance, and exit the prod node.

1 docker -H tcp://logging:2375 \

2 rm -f logstash

3

4 exit

Centralized Logging and Monitoring 387

Logging Hardware Status

One of the first things they teach you when starting to learn to work on computers is that software
runs on hardware. A software cannot run without hardware and hardware is useless without
software. Since they are dependent on each other, any attempt to collects the information about
the system needs to include both. We explored some of the ways to gather software data, so the next
step is to try to accomplish a similar result with hardware.

We need a tool that will collect statistics about the system it is running on and has the flexibility
to send that information to LogStash. Once we find and deploy such a tool, we can start using
statistics it provides to find past and current performance bottlenecks and predict future system
requirements. Since LogStash will send the information received from that tool to ElasticSearch, we
can create formulas that will allow us to perform performance analysis and capacity planning.

One such tool is CollectD³⁷⁷. It is free open source project written in C, making it high performant
and very portable. It can easily handle hundreds of thousands of data sets, and it comes with over
ninety plugins.

Luckily for us, LogStash has the CollectD input plugin³⁷⁸ that we can use to receive its events through
a UDP port. We’ll use (roles/logstash/files/syslog-collectd.conf)[https://github.com/vfarcic/ms-life-
cycle/blob/master/ansible/roles/logstash/files/syslog-collectd.conf] file to configure LogStash to ac-
ceptCollectD input. It is a copy of the (roles/logstash/files/syslog.conf)[https://github.com/vfarcic/ms-
lifecycle/blob/master/ansible/roles/logstash/files/syslog.conf] with an additional input definition.
Let’s take a look at its input section.

1 input {

2 syslog {

3 type => syslog

4 port => 25826

5 }

6 udp {

7 port => 25827

8 buffer_size => 1452

9 codec => collectd { }

10 type => collectd

11 }

12 }

As you can see, all we did was add a new input that listens on the UDP port 25827, set buffer size,
define that collectd codec should be used, and added a new field called type. With the value from
the type field, we can distinguish syslog logs from those coming from collectd.

³⁷⁷https://collectd.org/
³⁷⁸https://www.elastic.co/guide/en/logstash/current/plugins-codecs-collectd.html

https://collectd.org/
https://www.elastic.co/guide/en/logstash/current/plugins-codecs-collectd.html
https://collectd.org/
https://www.elastic.co/guide/en/logstash/current/plugins-codecs-collectd.html

Centralized Logging and Monitoring 388

Let’s run the playbook that will provision the logging server with LogStash and configure it to accept
both syslog and collectd input.

1 vagrant ssh cd

2

3 ansible-playbook /vagrant/ansible/elk.yml \

4 -i /vagrant/ansible/hosts/prod \

5 --extra-vars "logstash_config=syslog-collectd.conf restore_backup=true"

Youmight have noticed the usage of the restore_backup variable. One of kibana tasks is to restore an
ElasticSearch backup with the definitions of Kibana Dashboards that will be discussed soon. Backup
is restored through the vfarcic/elastic-dump³⁷⁹ container containing a nifty tool called elasticsearch-
dump³⁸⁰ by taskrabbit³⁸¹. It can be used to create and restore ElasticSearch backups.

Now that LogStash is configured to accept CollectD input, let’s turn our attention to the prod
server, and install CollectD. We’ll use the prod5.yml³⁸² playbook that, in addition to the tools
we used before, contains the collectd³⁸³ role. The tasks are defined in the (roles/collectd/tasks/-
main.yml)[https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/collectd/tasks/main.yml]
file. Its content is as follows.

1 - name: Packages are installed

2 apt:

3 name: "{{ item }}"

4 with_items: packages

5 tags: ["collectd"]

6

7 - name: Configuration is copied

8 template:

9 src: collectd.conf

10 dest: /etc/collectd/collectd.conf

11 register: config_result

12 tags: ["collectd"]

13

14 - name: Service is restarted

15 service:

16 name: collectd

17 state: restarted

18 when: config_result|changed

19 tags: ["collectd"]

³⁷⁹https://hub.docker.com/r/vfarcic/elastic-dump/
³⁸⁰https://github.com/taskrabbit/elasticsearch-dump
³⁸¹https://github.com/taskrabbit
³⁸²https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod5.yml
³⁸³https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/collectd

https://hub.docker.com/r/vfarcic/elastic-dump/
https://github.com/taskrabbit/elasticsearch-dump
https://github.com/taskrabbit/elasticsearch-dump
https://github.com/taskrabbit
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod5.yml
https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/collectd
https://hub.docker.com/r/vfarcic/elastic-dump/
https://github.com/taskrabbit/elasticsearch-dump
https://github.com/taskrabbit
https://github.com/vfarcic/ms-lifecycle/blob/master/ansible/prod5.yml
https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/collectd

Centralized Logging and Monitoring 389

By this time, you should probably consider yourself an expert in Ansible, and do not need an
explanation of the role. The only thing worth commenting is the roles/collectd/files/collectd.conf³⁸⁴
template that represents the CollectD configuration. Let’s take a quick look at it.

1 Hostname "{{ ansible_hostname }}"

2 FQDNLookup false

3

4 LoadPlugin cpu

5 LoadPlugin df

6 LoadPlugin interface

7 LoadPlugin network

8 LoadPlugin memory

9 LoadPlugin swap

10

11 <Plugin df>

12 Device "/dev/sda1"

13 MountPoint "/"

14 FSType "ext4"

15 ReportReserved "true"

16 </Plugin>

17

18 <Plugin interface>

19 Interface "eth1"

20 IgnoreSelected false

21 </Plugin>

22

23 <Plugin network>

24 Server "{{ elk_ip }}" "25827"

25 </Plugin>

26

27 <Include "/etc/collectd/collectd.conf.d">

28 Filter ".conf"

29 </Include>

It starts by defining the hostname through the Ansible variable ansible_hostname, followed by the
load of the plugins we’ll use. Their names should be self-explanatory. Finally, few of the plugins have
additional configurations. Please consult CollectD documentation³⁸⁵ for more information about
configuration format, all the plugins you can use, and their settings.

Let’s run the playbook.

³⁸⁴https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/collectd/templates/collectd.conf
³⁸⁵https://collectd.org/documentation.shtml

https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/collectd/templates/collectd.conf
https://collectd.org/documentation.shtml
https://github.com/vfarcic/ms-lifecycle/tree/master/ansible/roles/collectd/templates/collectd.conf
https://collectd.org/documentation.shtml

Centralized Logging and Monitoring 390

1 ansible-playbook /vagrant/ansible/prod5.yml \

2 -i /vagrant/ansible/hosts/prod

Now that CollectD is running, we can give it a few seconds to kick in and take a look at LogStash
logs.

1 docker -H tcp://logging:2375 \

2 logs logstash

A few of the entries are as follows.

1 {

2 "host" => "prod",

3 "@timestamp" => "2016-02-04T18:06:48.843Z",

4 "plugin" => "memory",

5 "collectd_type" => "memory",

6 "type_instance" => "used",

7 "value" => 356433920.0,

8 "@version" => "1",

9 "type" => "collectd"

10 }

11 {

12 "host" => "prod",

13 "@timestamp" => "2016-02-04T18:06:48.843Z",

14 "plugin" => "memory",

15 "collectd_type" => "memory",

16 "type_instance" => "buffered",

17 "value" => 31326208.0,

18 "@version" => "1",

19 "type" => "collectd"

20 }

21 {

22 "host" => "prod",

23 "@timestamp" => "2016-02-04T18:06:48.843Z",

24 "plugin" => "memory",

25 "collectd_type" => "memory",

26 "type_instance" => "cached",

27 "value" => 524840960.0,

28 "@version" => "1",

29 "type" => "collectd"

30 }

31 {

Centralized Logging and Monitoring 391

32 "host" => "prod",

33 "@timestamp" => "2016-02-04T18:06:48.843Z",

34 "plugin" => "memory",

35 "collectd_type" => "memory",

36 "type_instance" => "free",

37 "value" => 129638400.0,

38 "@version" => "1",

39 "type" => "collectd"

40 }

From that output, we can see that CollectD sent information about memory. The first entry contains
used, the second buffered, the third cached, and, finally, the fourth represents free memory. Similar
entries can be seen from the other plugins. CollectD will periodically repeat the process, thus
allowing us to analyze both historical and near real-time tendencies and problems.

Since CollectD generated the new fields, let us recreate index pattern by opening http://10.100.198.202:5601/³⁸⁶,
navigating to the Settings screen, and clicking the Create button.

While there are many reasons to visit Kibana’s Discover screen for software logs, there are only
a few, if any, to use it for CollectD metrics, so we’ll concentrate on Dashboards. That being said,
even if we are not going to look at hardware data from this screen, we still need to create searches
required for visualization. An example search that would retrieve all records from collectd, made in
the prod host, through the memory plugin, would be as follows.

1 type: "collectd" AND host: "prod" AND plugin: "memory"

That line can be written (or pasted) to the search field in the Discover screen, and it will return
all data matching that filter and the time set in the top-right corner of the screen. The backup we
restored already contained a few saved searches that can be opened through the Open Saved Search
button in the top-right corner of the screen. With those searches, we can proceed to visualizations.
As an example, please open the prod-df saved search.

Kibana Dashboards consist of one or more visualizations. They can be accessed by clicking the
Visualize button. When you open the Visualize screen, you’ll see different types of graphs you can
choose to create a new visualization. Since we restored a backup with a few visualizations I prepared,
you can load one by clicking it from the open a saved visualization section located at the bottom
of the screen. Please note that this screen appears only the first time and, from there on, the same
action can be accomplished by the Load Saved Visualization button located on the top-right side of
the screen. Go ahead and “play” a bit with Kibana visualizations. Once you’re done, we’ll move to
dashboards.

³⁸⁶http://10.100.198.202:5601/

http://10.100.198.202:5601/
http://10.100.198.202:5601/

Centralized Logging and Monitoring 392

Figure 16-07: Kibana visualization of hard disk usage

Dashboard can be opened from the top menu. The backup we restored contains one so let’s use it to
see CollectD in action. Please click the Dashboard button, followed by the Load Saved Dashboard
icon, and select the prod dashboard. It will display visualizations with one (and the only)CPU (prod-
cpu-0), hard disk (prod-df), and memory (prod-memory) usage inside the prod VM. CollectD offers
many more plugins than those we used. With more information coming in, this dashboard can be
made much more “colorful”, not to say useful. However, even though the dashboard we created does
not have much activity, you can probably imagine how it could be transformed into an indispensable
tool for monitoring the cluster status. There could be a separate dashboard for each server, one for
the whole cluster, and so on.

Centralized Logging and Monitoring 393

Figure 16-08: Kibana dashboard with CPU, hard disk, and memory usage over time

That was the basis of your future hardware monitoring dashboard. What else can with do with
hardware information (besides looking at dashboards)?

Self-Healing Based on Hardware Data

Using hardware data for self-healing is as important as software information. Now that we have
both, we can extend our system. Since we already went through all the tools and practices required
for such a system, there is no real need for us to go through them in the hardware context. Instead,
I’ll just give you a few ideas.

Consul is already monitoring hardware utilization. With historical data in ElasticSearch, we can
predict not only that the warning threshold is reached (for example 80%), but when it will get critical
(for example 90%). We can analyze the data and see that, for instance, during last 30 days, disk
utilization was increasing by an average rate of 0.5%, meaning that we have twenty days until it

Centralized Logging and Monitoring 394

reaches the critical state. We could also draw a conclusion that even through the warning threshold
is reached, it was a one time deal, and the available space is not shrinking anymore.

We could combine software and hardware metrics. With only software data, we might conclude
that at peak hours, when traffic increases, we need to scale our services, by adding hardware we
might change that opinion after realizing that the problem was actually in the network that cannot
support such a load.

Analysis combinations we can create are limitless, and the number of formulas we’ll create will
grow with time and experience. Every time we pass through one door, another one opens.

Final Thoughts

This is my favorite chapter. It combines most of the practices we learned throughout the book into a
grand finale. Almost everything happening on a server, be it software or hardware, system programs
or those we deployed, is sent to LogStash and, from there, to ElasticSearch. And it’s not only one
server. With a simple rsyslog and collectd configurations applied to all your nodes, the whole cluster
will be sending (almost) all the logs and events. You’ll know who did what, which processes started,
and which were stopped. You’ll be aware what was added, and what was removed. You be alerted
when a server is low on CPU, which one is about to get its hard disk full, and so on. You’ll have the
information about every service you deploy or remove. You’ll know when were containers scaled,
and when descaled.

We created a logging and monitoring system that can be described through the Figure 16-09.

Centralized Logging and Monitoring 395

Figure 16-09: Kibana dashboard with CPU, hard disk, and memory usage over time

Knowing everything is a worthy goal and, with a system we designed, you are one step closer to
fulfilling it. On top of knowing everything about the past and the present, you made the first step
towards knowing the future. If you combine the practices from this chapter with those we learned in
the Self-Healing Systems, your systems will be able to recuperate from failures and, in many cases,
prevent a disease from happening in the first place.

Let us finish with some cleaning.

1 exit

2

3 vagrant destroy -f

Farewell
You don’t learn to walk by following rules. You learn by doing, and by falling over.

– Richard Branson

The custom is to summarize the book at its end. I’ll break that tradition by not writing a summary.
We went through so many practices and tools that summarizing them would require quite a big
chapter. After all, if, at this point, you need a summary of what you learned, it would only mean
that you didn’t learn as much as I hoped. Consequently, I would feel that I failed, get depressed, and
never write another book.

The book was never meant to be a comprehensive cookbook. I haven’t explained everything you can
do with Docker. Nor I showed you all the power behind Ansible. As a matter a fact, I haven’t gone
into great details with any of the tools. Such an approach would require dedication of a single book
for each of them. The world is full of cookbooks. I wanted to write something different. I wanted to
write a book that connects the dots between different practices and tools. I wanted to show you the
logic behind some of the processes we applied. However, since I am a very hands-on type of person,
my way of learning logic and processes involves a lot of practice and a lot of dedication. For that
reason, the book is full of many hands-on examples. I thought that the best approach is to learn by
doing. I hope I accomplished my goal. I hope I opened some doors that you might not have known
existed, or you didn’t know how to step through.

Let us not end the journey here. Let’s continue in a more direct manner. Please use the Disqus
channel The DevOps 2.0 Toolkit³⁸⁷ if you’d like to discuss any aspect of the book. If you got stuck
somewhere, if you failed to grasp something, or if you disagree with one of my views (or even all
of them), just post it on the channel. I created it today while writing the final words. The problem
is that nobody wants to be the first to post something in an empty place. I encourage you to be that
first person. Others will benefit from our discussion and join in. If, on the other hand, you prefer a
more one-on-one conversation, please send me an email to viktor@farcic.com, contact me through
HangOuts or Skype (my user is vfarcic), or come to Barcelona and invite me for a beer.

I will continue writing posts in my blog TechnologyConversations.com³⁸⁸ until, one day, I gather
the courage to start writing a new book. Maybe it will be The DevOps 3.0 Toolkit. Or, more likely, it
will be something entirely different. Time will tell.

Keep learning, keep exploring, and keep improving the way you work. That is the only way to move
forward in our line of business.

Good night, and good luck.

³⁸⁷https://disqus.com/home/channel/thedevops20toolkit/
³⁸⁸http://technologyconversations.com/

396

https://disqus.com/home/channel/thedevops20toolkit/
http://technologyconversations.com/
https://disqus.com/home/channel/thedevops20toolkit/
http://technologyconversations.com/

Farewell 397

Viktor Farcic

5th of February 2016, Barcelona

	Table of Contents
	Preface
	Overview
	Audience
	About the Author
	The DevOps Ideal
	Continuous Integration, Delivery, and Deployment
	The Light at the End of the Deployment Pipeline

	The Implementation Breakthrough: Continuous Deployment, Microservices, and Containers
	Continuous Integration
	Continuous Delivery and Deployment
	Microservices
	Containers
	The Three Musketeers: Synergy of Continuous Deployment, Microservices, and Containers

	System Architecture
	Monolithic Applications
	Services Split Horizontally
	Microservices
	Monolithic Applications and Microservices Compared
	Deployment Strategies
	Microservices Best Practices
	Final Thoughts

	Setting Up the Development Environment With Vagrant and Docker
	Combining Microservice Architecture and Container Technology
	Vagrant and Docker
	Development Environment Setup

	Implementation of the Deployment Pipeline: Initial Stages
	Spinning Up the Continuous Deployment Virtual Machine
	Deployment Pipeline Steps
	The Checklist

	Configuration Management in the Docker World
	CFEngine
	Puppet
	Chef
	Ansible
	Final Thoughts
	Configuring the Production Environment
	Setting Up the Ansible Playbook

	Implementation of the Deployment Pipeline: Intermediate Stages
	Deploying Containers to the Production Server
	Docker UI
	The Checklist

	Service Discovery: The Key to Distributed Services
	Service Registry
	Service Registration
	Service Discovery
	Service Discovery Tools
	Manual Configuration
	Zookeeper
	etcd
	Consul
	Service Discovery Tools Compared

	Proxy Services
	Reverse Proxy Service
	How Can Proxy Service Help Our Project?
	nginx
	HAProxy
	Proxy Tools Compared

	Implementation of the Deployment Pipeline: The Late Stages
	Starting the Containers
	Integrating the Service
	Running Post-Deployment Tests
	Pushing the Tests Container to the Registry
	The Checklist

	Automating Implementation of the Deployment Pipeline
	Deployment Pipeline Steps
	The Playbook and the Role
	Pre-Deployment Tasks
	Deployment Tasks
	Post-Deployment Tasks
	Running the Automated Deployment Pipeline

	Continuous Integration (CI), Delivery and Deployment (CD) Tools
	CI/CD Tools Compared
	The Short History of CI/CD Tools
	Jenkins
	Final Thoughts

	Blue-Green Deployment
	The Blue-Green Deployment Process
	Manually Running the Blue-Green Deployment
	Automating the Blue-Green Deployment with Jenkins Workflow

	Clustering And Scaling Services
	Scalability
	Axis Scaling
	Clustering
	Docker Clustering Tools Compared: Kubernetes vs Docker Swarm vs Mesos
	Docker Swarm Walkthrough
	Deploying with Docker Swarm Without Links
	Scaling Services with Docker Swarm
	Scheduling Containers Depending on Reserved CPUs and Memory
	Automating Deployment With Docker Swarm and Ansible

	Self-Healing Systems
	Self-Healing Levels and Types
	Self-Healing Architecture
	Self-Healing with Docker, Consul Watches, and Jenkins
	Combining On-Premise with Cloud Nodes
	Self-Healing Summary (So Far)

	Centralized Logging and Monitoring
	The Need for Centralized Logging
	Sending Log Entries to ElasticSearch
	Parsing Log Entries
	Sending Log Entries to a Central LogStash Instance
	Sending Docker Log Entries to a Central LogStash Instance
	Self-Healing Based on Software Data
	Logging Hardware Status
	Self-Healing Based on Hardware Data
	Final Thoughts

	Farewell

